摘要:椭圆关于点A对称的椭圆方程为 .[能力测试] 姓名 得分
网址:http://m.1010jiajiao.com/timu_id_178562[举报]
(14分)已知椭圆的两个焦点分别为F1(-c,0),F2(c,0),(c>0),过点E的直线与椭圆交于A、B两点,且F1A//F2B,|F1A|=2|F2B|,
(1)求离心率;
(2)求直线AB的斜率;
(3)设点C与点A关于标标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求的值。
(14分)已知椭圆的两个焦点分别为F1(-c,0),F2(c,0),(c>0),过点E的直线与椭圆交于A、B两点,且F1A//F2B,|F1A|=2|F2B|,
(1)求离心率;
(2)求直线AB的斜率;
(3)设点C与点A关于标标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求的值。
(1)求离心率;
(2)求直线AB的斜率;
(3)设点C与点A关于标标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求的值。
21.已知方向向量为v=(1,)的直线l过点(0,-2)和椭圆C:(a>b>0)的焦点,且椭圆C的中心关于直线l的对称点在椭圆C的右准线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在过点E(-2,0)的直线m交椭圆C于点M、N,满足cot∠MON≠0(O为原点).若存在,求直线m的方程;若不存在,请说明理由.
查看习题详情和答案>>