摘要:判断下列命题是否正确:(1)奇函数的图象一定过原点; (2)函数y=f(x)的图象与函数x=f(y)的图象关于直线y=x对称;,则f(x)的图象关于y轴对称; (4)y=f(x)图象与y=-f(x)图象关于x轴对称
网址:http://m.1010jiajiao.com/timu_id_177317[举报]
判断下列命题是否正确,
(1)梯形可以确定一个平面.
(2)圆心和圆上两点可以确定一个平面;
(3)已知a,b,c,d是四条直线,若a∥b,b∥c,c∥d,则a∥d
(4)两条直线a,b没有公共点,那么a与b是异面直线;
(5)α、β是平面,且直线a?α,直线b?β,则a,b是异面直线,其中正确的命题是
查看习题详情和答案>>
(1)梯形可以确定一个平面.
(2)圆心和圆上两点可以确定一个平面;
(3)已知a,b,c,d是四条直线,若a∥b,b∥c,c∥d,则a∥d
(4)两条直线a,b没有公共点,那么a与b是异面直线;
(5)α、β是平面,且直线a?α,直线b?β,则a,b是异面直线,其中正确的命题是
(1)(3)
(1)(3)
.道路交通安全法中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q<80时,为酒后驾车,当Q≥80时为醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了160辆机动车驾驶员的血酒含量,其中查处酒后驾车的有4人,查处醉酒驾车的有2人,依据上述材料回答下列问题:
(1)分别写出违法驾车发生的频率和违法驾车中醉酒驾车的频率;
(2)设酒后驾车为事件E,醉酒驾车为事件F,
判断下列命题是否正确(正确的填写“√”,错误的填写“×”)(填在答题卷中)
①E与F不是互斥事件.
②E与F是互斥事件,但不是对立事件.
③事件E包含事件F.
④P(E∪F)=P(E)+P(F)=1.
(3)从违法驾车的6人中,抽取2人,请一一列举出所有的抽取结果,并求取到的2人中含有醉酒驾车的概率.(酒后驾车的4人用大写字母A,B,C,D表示,醉酒驾车的2人用小写字母a,b表示).
查看习题详情和答案>>
(1)分别写出违法驾车发生的频率和违法驾车中醉酒驾车的频率;
(2)设酒后驾车为事件E,醉酒驾车为事件F,
判断下列命题是否正确(正确的填写“√”,错误的填写“×”)(填在答题卷中)
①E与F不是互斥事件.
×
×
②E与F是互斥事件,但不是对立事件.
√
√
③事件E包含事件F.
×
×
④P(E∪F)=P(E)+P(F)=1.
×
×
(3)从违法驾车的6人中,抽取2人,请一一列举出所有的抽取结果,并求取到的2人中含有醉酒驾车的概率.(酒后驾车的4人用大写字母A,B,C,D表示,醉酒驾车的2人用小写字母a,b表示).
判断下列命题是否正确.
(1)掷两枚硬币,可能出现“两个正面”“两个反面”“一正一反”三种结果;
(2)某袋中装有大小均匀的三个红球,两个黑球,一个白球,任取一球,那么每种颜色的球被摸到的可能性相同.
(3)从-4,-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同;
(4)分别从3名男同学、4名女同学中各选一名代表,男、女同学当选的可能性相同.
查看习题详情和答案>>