摘要:即细菌在t=5与t=10时的瞬时速度分别为0和-10 000. 4分(2)由-2 000t+10 000>0,得t<5,由-2 000t+10 000<0,得t>5, 6分即细菌在t∈(0,5)时间段数量增加,在t∈时间段数量减少. 8分17已知a为实数,f(x)=(x2-4)(x-a).;在[-2,2]上的最大值和最小值.分析 本题主要考查函数.导数.不等式等基础知识,考查分析推理和知识的综合应用能力.求函数在闭区间的最值,只需比较导数为零的点与区间端点处的函数值的大小即可.解 =x3-ax2-4x+4a,
网址:http://m.1010jiajiao.com/timu_id_15897[举报]
当室内的有毒细菌开始增加时,就要使用杀菌剂.刚开始使用的时候,细菌数量还会继续增加,随着时间的增加,它增加幅度逐渐变小,到一定时间,细菌数量开始减少.如果使用杀菌剂t小时后的细菌数量为b(t)=105+104t-103t2.
(1)求细菌在t=5与t=10时的瞬时速度;
(2)细菌在哪段时间增加,在哪段时间减少?为什么?
查看习题详情和答案>>
(1)求细菌在t=5与t=10时的瞬时速度;
(2)细菌在哪段时间增加,在哪段时间减少?为什么?
当室内的有毒细菌开始增加时,就要使用杀菌剂.刚开始使用的时候,细菌数量还会继续增加,随着时间的增加,它增加幅度逐渐变小,到一定时间,细菌数量开始减少.如果使用杀菌剂t小时后的细菌数量为b(t)=105+104t-103t2.
(1)求细菌在t=5与t=10时的瞬时速度;(2)细菌在哪段时间增加,在哪段时间减少?为什么? 查看习题详情和答案>>.当室内的有毒细菌开始增加时,就要使用杀菌剂.刚开始使用的时候,细菌数量还会继续增加,随着时间的增加,它增加幅度逐渐变小,到一定时间,细菌数量开始减少.如果使用杀菌剂t小时后的细菌数量为b(t)=105+104t-103t2.
(1)求细菌在t=5与t=10时的瞬时速度;(2)细菌在哪段时间增加,在哪段时间减少?为什么?
查看习题详情和答案>>