摘要:分析 当n无限增大时, 的分子中含无限多项,而“和的极限等于极限的和 只能用于有限多项相加.因此应先将分子化为只含有限多项的算式,然后再运用极限的运算法则求极限.
网址:http://m.1010jiajiao.com/timu_id_15792[举报]
用数学归纳法证明1+a+a2+…+an+1= (n∈N*,a≠1)时,在验证n=1成立时,左边应为某学生在证明等差数列前n项和公式时,证法如下:
(1)当n=1时,S1=a1显然成立;
(2)假设当n=k时,公式成立,即Sk=ka1+,
当n=k+1时,Sk+1 =a1+a2+…+ak+ak+1 =a1+(a1+d)+(a1+2d)+…+[a1+(k-1)d]+(a1+kd)=(k+1)a1+(d+2d+…+kd)
=(k+1)a1+ d=(k+1)a1+ d,
∴n=k+1时公式成立.
由(1)(2)知,对n∈N*时,公式都成立.
以上证明错误的是( )
A.当n取第一个值1时,证明不对
B.归纳假设的写法不对
C.从n=k到n=k+1时的推理中未用归纳假设
D.从n=k到n=k+1时的推理有错误
查看习题详情和答案>>