网址:http://m.1010jiajiao.com/timu_id_156300[举报]
1.D 2.C 3.C 4.D 5.A 6.D 7.B 8.C 9.A 10.B
11.B 12.D
13. 14. 15. 11 16.
17.(本小题满分12分)
解:(1)
又
(2)
又
18.(本小题满分12分)
解:(1)
∴
∴
(2)∵
∴
最小正周期为
由
得
故的单调递增区间为
19.(本小题满分12分)
解:(1)成等差数列,
(2)
20、(本小题满分12分)
(I)解:由得
,
(II)由,
∴数列{}是以S1+1=2为首项,以2为公比的等比数列,
当n=1时a1=1满足
(III)①
,②
①-②得,
则.
21、(本小题满分12分) (1)证明:
(即的对称轴)
(2)由(1).
经判断:极小
为0;
.
22、(本小题满分12分)
解:(1)由椭圆定义及已知条件知2a=|F1B|+|F2B|=10,∴a=5.
又c=4,∴b2=a2-c2=9.
故椭圆方程为+=1.
(2)由点B在椭圆上,可知|F2B|=|yB|=,而椭圆的右准线方程为x=,离心率为,
由椭圆定义有|F2A|=(-x1),|F2C|=(-x2).
依题意|F2A|+|F2C|=2|F2B|.
则(-x1)+(-x2)=2×.
∴x1+x2=8.
设弦AC的中点为P(x0,y0),则x0==4,
即弦AC的中点的横坐标为4.
(3)由A(x1,y1),C(x2,y2)在椭圆上得9x12+25y12=9×25,9x22+25y22=9×25.
两式相减整理得9()+25()()=0(x1≠x2).
将=x0=4,=y0,=-(k≠0)代入得
9×4+25y0(-)=0,即k=y0.
由于P(4,y0)在弦AC的垂直平分线上,
∴y0=4k+m,于是m=y0-4k=y0-y0=-y0.
而-<y0<,∴-<m<.
(本小题满分12分)如图,在直三棱柱ABC―A1B1C1中,∠ACB = 90°. AC = BC = a,
D、E分别为棱AB、BC的中点, M为棱AA1上的点,二面角M―DE―A为30°.
(1)求MA的长;w.w.w.k.s.5.u.c.o.m
(2)求点C到平面MDE的距离。
查看习题详情和答案>>(本小题满分12分)某校高2010级数学培优学习小组有男生3人女生2人,这5人站成一排留影。
(1)求其中的甲乙两人必须相邻的站法有多少种? w.w.w.k.s.5.u.c.o.m
(2)求其中的甲乙两人不相邻的站法有多少种?
(3)求甲不站最左端且乙不站最右端的站法有多少种 ?
查看习题详情和答案>>(本小题满分12分)
某厂有一面旧墙长14米,现在准备利用这面旧墙建造平面图形为矩形,面积为126平方米的厂房,工程条件是①建1米新墙费用为a元;②修1米旧墙的费用为元;③拆去1米旧墙,用所得材料建1米新墙的费用为元,经过讨论有两种方案: (1)利用旧墙的一段x米(x<14)为矩形厂房一面的边长;(2)矩形厂房利用旧墙的一面边长x≥14.问如何利用旧墙,即x为多少米时,建墙费用最省?(1)、(2)两种方案哪个更好?
查看习题详情和答案>>