摘要:已知数列{an}.{bn},其中an=1+3+5+-+,bn=2n+4,试问是否存在这样的自然数n,使得an≤bn成立?分析 对n赋值后,比较几对an与bn的大小,可作出合理猜测,再用数学归纳法予以证明.解 an=1+3+5+-+2,当n=5时,a5=36,b5=25+4=36,此时a5=b5;当n=6时, a6=49,b6=26+4=68,此时a6<b6;当n=7时,a7=64,b7=27+4=132,此时a7<b7;当n=8时,a8=81,b8=28+4=260,此时a8<b8.猜想:当n≥6时,有an<bn. 3分下面用数学归纳法证明上述猜想.①当n=6时,显然不等式成立,∴n=6时,不等式an<bn成立;②假设当n=k时,不等式成立,即ak<bk,也即(k+1)2<2k+4;当n=k+1时.bk+1=2k+1+4=2(2k+4)-4>2(k+1)2-4=2k2+4k-2,而(2k2+4k-2)-(k+2)2=k2-6>0(∵k≥6,∴k2>6),即2k2+4k-2>(k+2)2=[(k+1)+1]2.由不等式的传递性,知bk+1>[(k+1)+1]2=ak+1.∴当n=k+1时,不等式也成立. 8分由①②可知,对一切n∈N,且n≥6,都有an<bn.综上所述,可知只有当n=5时,an=bn;当n≥6时,an<bn.因此存在使an≤bn成立的自然数n.10分

网址:http://m.1010jiajiao.com/timu_id_15460[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网