摘要:时命题成立,即ak=k2+k,
网址:http://m.1010jiajiao.com/timu_id_15390[举报]
用数学归纳法证明1+a+a2+…+an+1= (n∈N*,a≠1)时,在验证n=1成立时,左边应为某学生在证明等差数列前n项和公式时,证法如下:
(1)当n=1时,S1=a1显然成立;
(2)假设当n=k时,公式成立,即Sk=ka1+,
当n=k+1时,Sk+1 =a1+a2+…+ak+ak+1 =a1+(a1+d)+(a1+2d)+…+[a1+(k-1)d]+(a1+kd)=(k+1)a1+(d+2d+…+kd)
=(k+1)a1+ d=(k+1)a1+ d,
∴n=k+1时公式成立.
由(1)(2)知,对n∈N*时,公式都成立.
以上证明错误的是( )
A.当n取第一个值1时,证明不对
B.归纳假设的写法不对
C.从n=k到n=k+1时的推理中未用归纳假设
D.从n=k到n=k+1时的推理有错误
查看习题详情和答案>>
对于不等式<n+1(n∈N*),某同学的证明过程如下:
(1)当n=1时, <1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即<k+1,则当n=k+1时, <,
∴当n=k+1时,不等式成立.
上述证法( )
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
查看习题详情和答案>>