摘要:则n=k+1时,∵成立, 4分
网址:http://m.1010jiajiao.com/timu_id_15377[举报]
已知数列{an}的前n项和为Sn,且a1+a5=17.
(1)若{an}为等差数列,且S8=56.
①求该等差数列的公差d;
②设数列{bn}满足bn=3n•an,则当n为何值时,bn最大?请说明理由;
(2)若{an}还同时满足:①{an}为等比数列;②a2a4=16;③对任意的正整数k,存在自然数m,使得Sk+2、Sk、Sm依次成等差数列,试求数列{an}的通项公式.
查看习题详情和答案>>
(1)若{an}为等差数列,且S8=56.
①求该等差数列的公差d;
②设数列{bn}满足bn=3n•an,则当n为何值时,bn最大?请说明理由;
(2)若{an}还同时满足:①{an}为等比数列;②a2a4=16;③对任意的正整数k,存在自然数m,使得Sk+2、Sk、Sm依次成等差数列,试求数列{an}的通项公式.
(2013•鹰潭一模)给出以下四个结论:
①函数f(x)=
关于点(1,3)中心对称;
②在△ABC中,“bcosA=acosB”是“△ABC为等腰三角形”的充要条件;
③若将函数f(x)=sin(2x-
)的图象向右平移Φ(Φ>0)个单位后变为偶函数,则Φ的最小值是
;
④已知数列{an}是等比数列,Sn是其前n项和,则当k为奇数时,Sk,S2k-Sk,S3k-S2k成等比数列.其中正确的结论是
查看习题详情和答案>>
①函数f(x)=
3x-2 |
x-1 |
②在△ABC中,“bcosA=acosB”是“△ABC为等腰三角形”的充要条件;
③若将函数f(x)=sin(2x-
π |
3 |
π |
12 |
④已知数列{an}是等比数列,Sn是其前n项和,则当k为奇数时,Sk,S2k-Sk,S3k-S2k成等比数列.其中正确的结论是
①③④
①③④
.20、若有穷数列a1,a2…an(n是正整数),满足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整数,且1≤i≤n),就称该数列为“对称数列”.
(1)已知数列{bn}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{bn}的每一项
(2)已知{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1…c2k-1构成首项为50,公差为-4的等差数列,数列{cn}的前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少?
(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m-1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008
查看习题详情和答案>>
(i是正整数,且1≤i≤n),就称该数列为“对称数列”.
(1)已知数列{bn}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{bn}的每一项
(2)已知{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1…c2k-1构成首项为50,公差为-4的等差数列,数列{cn}的前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少?
(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m-1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008