ÌâÄ¿ÄÚÈÝ
£¨2013•Ó¥Ì¶Ò»Ä££©¸ø³öÒÔÏÂËĸö½áÂÛ£º
¢Ùº¯Êýf£¨x£©=
¹ØÓڵ㣨1£¬3£©ÖÐÐĶԳƣ»
¢ÚÔÚ¡÷ABCÖУ¬¡°bcosA=acosB¡±ÊÇ¡°¡÷ABCΪµÈÑüÈý½ÇÐΡ±µÄ³äÒªÌõ¼þ£»
¢ÛÈô½«º¯Êýf£¨x£©=sin£¨2x-
£©µÄͼÏóÏòÓÒƽÒƦµ£¨¦µ£¾0£©¸öµ¥Î»ºó±äΪżº¯Êý£¬Ôò¦µµÄ×îСֵÊÇ
£»
¢ÜÒÑÖªÊýÁÐ{an}ÊǵȱÈÊýÁУ¬SnÊÇÆäÇ°nÏîºÍ£¬Ôòµ±kΪÆæÊýʱ£¬Sk£¬S2k-Sk£¬S3k-S2k³ÉµÈ±ÈÊýÁУ®ÆäÖÐÕýÈ·µÄ½áÂÛÊÇ
¢Ùº¯Êýf£¨x£©=
3x-2 |
x-1 |
¢ÚÔÚ¡÷ABCÖУ¬¡°bcosA=acosB¡±ÊÇ¡°¡÷ABCΪµÈÑüÈý½ÇÐΡ±µÄ³äÒªÌõ¼þ£»
¢ÛÈô½«º¯Êýf£¨x£©=sin£¨2x-
¦Ð |
3 |
¦Ð |
12 |
¢ÜÒÑÖªÊýÁÐ{an}ÊǵȱÈÊýÁУ¬SnÊÇÆäÇ°nÏîºÍ£¬Ôòµ±kΪÆæÊýʱ£¬Sk£¬S2k-Sk£¬S3k-S2k³ÉµÈ±ÈÊýÁУ®ÆäÖÐÕýÈ·µÄ½áÂÛÊÇ
¢Ù¢Û¢Ü
¢Ù¢Û¢Ü
£®·ÖÎö£º¢ÙÓÉͼÏó±ä»»µÄ֪ʶ¿ÉÖªÕýÈ·£»¢ÚÔÚ¡÷ABCÖУ¬ÓÉbcosA=acosB£¬¿ÉµÃ¡÷ABCΪµÈÑüÈý½ÇÐΣ¬µ«µ±¡÷ABCΪµÈÑüÈý½ÇÐÎʱ£¬²»ÄÜÍƳöbcosA=acosB£»¢ÛÓÉÌâÒâ¿ÉµÃ¦µ=
¦Ð+
£¬½áºÏ¦µ£¾0£¬¿ÉµÃ½áÂÛ£»¢ÜÓɵȱÈÊýÁеġ°Æ¬¶ÎºÍ¡±ÈԳɵȱÈÊýÁУ¬¿ÉµÃ´ð°¸£®
k |
2 |
¦Ð |
12 |
½â´ð£º½â£º¢Ùº¯Êýf£¨x£©=
=
=3+
£¬ÆäͼÏó¿ÉÓɺ¯Êýy=
µÄͼÏóÏòÓÒƽÒÆ1¸öµ¥Î»£¬
ÏòÉÏƽÒÆ3¸öµ¥Î»µÃµ½£¬¹Êº¯Êýy=
µÄ¶Ô³ÆÖÐÐÄÒ²ÓÉ£¨0£¬0£©ÒƵ½µã£¨1£¬3£©£¬
¹ÊÒÑÖªº¯ÊýµÄͼÏó¹ØÓڵ㣨1£¬3£©ÖÐÐĶԳƣ¬¹ÊÕýÈ·£»
¢ÚÔÚ¡÷ABCÖУ¬ÓÉbcosA=acosB£¬¿ÉµÃsinBcosA=sinAcosB£¬¼´sin£¨A-B£©=0£¬¿ÉµÃA=B£¬¹Ê¡÷ABCΪµÈÑüÈý½ÇÐΣ¬
¶øµ±¡÷ABCΪµÈÑüÈý½ÇÐÎʱ£¬¿ÉÄÜB=C£¬²»ÄÜÍƳöA=B£¬Ò²²»ÄÜÍƳöbcosA=acosB£¬¹Ê²»ÊdzäÒªÌõ¼þ£¬¹Ê´íÎó£»
¢ÛÈô½«º¯Êýf£¨x£©=sin£¨2x-
£©µÄͼÏóÏòÓÒƽÒƦµ£¨¦µ£¾0£©¸öµ¥Î»ºó£¬½âÎöʽ±äΪf£¨x£©=sin£¨2x-2¦µ-
£©£¬
ÓÉżº¯Êý¿ÉµÃ2¦µ+
=k¦Ð+
£¬k¡ÊZ£¬½âµÃ¦µ=
¦Ð+
£¬½áºÏ¦µ£¾0£¬¿ÉµÃµ±k=0ʱ£¬¦µÈ¡×îСֵ
£¬¹ÊÕýÈ·£»
¢ÜÒÑÖªÊýÁÐ{an}ÊǵȱÈÊýÁУ¬SnÊÇÆäÇ°nÏîºÍ£¬µ±¹«±Èq=1ʱ£¬Sk£¬=ka1£¬S2k-Sk=ka1£¬S3k-S2k=ka1£¬ÏÔÈ»ÓÐSk£¬S2k-Sk£¬S3k-S2k³ÉµÈ±ÈÊýÁУ¬
µ±¹«±Èq¡Ù1ʱ£¬Sk=
£¬S2k-Sk=
-
=
q£¬S3k-S2k=
-
=
q2£¬
ÏÔȻҲÓÐSk£¬S2k-Sk£¬S3k-S2k³ÉµÈ±ÈÊýÁУ¬¹ÊÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü
3x-2 |
x-1 |
3(x-1)+1 |
x-1 |
1 |
x-1 |
1 |
x |
ÏòÉÏƽÒÆ3¸öµ¥Î»µÃµ½£¬¹Êº¯Êýy=
1 |
x |
¹ÊÒÑÖªº¯ÊýµÄͼÏó¹ØÓڵ㣨1£¬3£©ÖÐÐĶԳƣ¬¹ÊÕýÈ·£»
¢ÚÔÚ¡÷ABCÖУ¬ÓÉbcosA=acosB£¬¿ÉµÃsinBcosA=sinAcosB£¬¼´sin£¨A-B£©=0£¬¿ÉµÃA=B£¬¹Ê¡÷ABCΪµÈÑüÈý½ÇÐΣ¬
¶øµ±¡÷ABCΪµÈÑüÈý½ÇÐÎʱ£¬¿ÉÄÜB=C£¬²»ÄÜÍƳöA=B£¬Ò²²»ÄÜÍƳöbcosA=acosB£¬¹Ê²»ÊdzäÒªÌõ¼þ£¬¹Ê´íÎó£»
¢ÛÈô½«º¯Êýf£¨x£©=sin£¨2x-
¦Ð |
3 |
¦Ð |
3 |
ÓÉżº¯Êý¿ÉµÃ2¦µ+
¦Ð |
3 |
¦Ð |
2 |
k |
2 |
¦Ð |
12 |
¦Ð |
12 |
¢ÜÒÑÖªÊýÁÐ{an}ÊǵȱÈÊýÁУ¬SnÊÇÆäÇ°nÏîºÍ£¬µ±¹«±Èq=1ʱ£¬Sk£¬=ka1£¬S2k-Sk=ka1£¬S3k-S2k=ka1£¬ÏÔÈ»ÓÐSk£¬S2k-Sk£¬S3k-S2k³ÉµÈ±ÈÊýÁУ¬
µ±¹«±Èq¡Ù1ʱ£¬Sk=
a1(1-qk) |
1-k |
a1(1-q2k) |
1-k |
a1(1-qk) |
1-k |
a1(1-qk) |
1-k |
a1(1-q3k) |
1-k |
a1(1-q2k) |
1-k |
a1(1-qk) |
1-k |
ÏÔȻҲÓÐSk£¬S2k-Sk£¬S3k-S2k³ÉµÈ±ÈÊýÁУ¬¹ÊÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü
µãÆÀ£º±¾Ì⿼²éÃüÌâÕæ¼ÙµÄÅжϣ¬Éæ¼°µÈ±ÈÊýÁеÄÐÔÖʺÍÈý½Çº¯ÊýµÄÐÔÖÊ£¬Êô»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿