网址:http://m.1010jiajiao.com/timu_id_135715[举报]
(本大题满分14分)
2010年上海世博会组委会为保证游客参观的顺利进行,对每天在各时间段进入园区和离开园区的人数(以百人为计数单位)作了一个模拟预测.为了方便起见,以10分钟为一个计算单位,上午9点10分作为第一个计数人数的时间,即;9点20分作为第二个计数人数的时间,即;依此类推,把一天内从上午9点到晚上24点分成了90个计数单位.第个时刻进入园区的人数和时间()满足以下关系: ,
第个时刻离开园区的人数和时间满足以下关系: .
(1)试计算在当天下午3点整(即15点整)时,世博园区内共有游客多少百人?(提示:,结果仅保留整数)
(2)问:当天什么时刻世博园区内游客总人数最多?
查看习题详情和答案>>已知递增等差数列满足:,且成等比数列.
(1)求数列的通项公式;
(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.
【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为,
由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。
解:(1)设数列公差为,由题意可知,即,
解得或(舍去). …………3分
所以,. …………6分
(2)不等式等价于,
当时,;当时,;
而,所以猜想,的最小值为. …………8分
下证不等式对任意恒成立.
方法一:数学归纳法.
当时,,成立.
假设当时,不等式成立,
当时,, …………10分
只要证 ,只要证 ,
只要证 ,只要证 ,
只要证 ,显然成立.所以,对任意,不等式恒成立.…14分
方法二:单调性证明.
要证
只要证 ,
设数列的通项公式, …………10分
, …………12分
所以对,都有,可知数列为单调递减数列.
而,所以恒成立,
故的最小值为.
查看习题详情和答案>>
(本小题满分12分)
某校有一贫困学生因病需手术治疗,但现在还差手术费1.1万元.团委计划在全校开展爱心募捐活动,为了增加活动的趣味性吸引更多学生参与,特举办“摇奖100%中奖”活动.凡捐款10元便可享受一次摇奖机会,如图是摇奖机的示意图,摇奖机的旋转盘是均匀的,扇形区域A,B,C,D,E所对应的圆心角的比值分别为1:2:3:4:5.相应区域分别设立一、二、三、四、五等奖,奖品分别为价值5元、4元、3元、2元、1元的学习用品.摇奖时,转动圆盘片刻,待停止后,固定指针指向哪个区域(边线忽略不计)即可获得相应价值的学习用品(如图指针指向区域,可获得价值3元的学习用品).
(1)预计全校捐款10元者将会达到1500人次,那么除去购买学习用品的款项后,剩余款项是否能帮助该生完成手术治疗?
(2)如果学生甲捐款20元,获得了两次摇奖机会,求他获得价值6元时的学习用品的概率.
查看习题详情和答案>>(本小题满分12分)已知某人工养殖观赏鱼池塘中养殖着大量的红鲫鱼与中国金鱼.为了估计池塘中这两种鱼的数量,养殖人员从水库中捕出了红鲫鱼与中国金鱼各1000只,给每只鱼作上不影响其存活的记号,然后放回池塘,经过一定时间,再每次从池塘中随机地捕出1000只鱼,分类记录下其中有记号的鱼的数目,随即将它们放回池塘中.这样的记录作了10次,将记录获取的数据作成如右的茎叶图.
(Ⅰ)根据茎叶图计算有记号的红鲫鱼与中国金鱼数目的平均数,并估计池塘中的红鲫鱼与中国金鱼的数量;
(Ⅱ)随机从池塘中逐只、有放回地捕出3只鱼,求恰好是1只中国金鱼、2只红鲫鱼的概率.
查看习题详情和答案>>(本小题满分12分)某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图.
表1:(甲流水线样本频数分布表) 图1:(乙流水线样本频率分布直方图)
(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率
分别是多少;
(3)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
甲流水线 | 乙流水线 | 合计 | |
合格品 |
|
| |
不合格品 |
|
| |
合 计 |
|
附:下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中)
查看习题详情和答案>>