网址:http://m.1010jiajiao.com/timu_id_135477[举报]
一.选择题
CADAD CBCAD BB
二.填空题
;61; 4;
三.解答题
17. 解:(I)由得…………………………….2分
即,所以为第一、三象限角
又即,所以,故 ……………..4分
(II)原式…………………………………6分
……..10分
18.解: ……………..2分
……………..4分
,且该区间关于对称的. ……………..6分
又恰好有3个元素,所以. ……………..8分
即, ……………..10分
解之得:. ……………..12分
19. 解:(Ⅰ)∵
, ……………..2分
∴ ,
∴的图象的对称中心为, ……………..4分
又已知点为的图象的一个对称中心,∴,
而,∴或. ……………..6分
(Ⅱ)若成立,即时,,,…8分
由, ……………..10分
∵ 是的充分条件,∴,解得,
即的取值范围是. ……………..12分
20.(1) 1分
又当时, 2分
当时,
上式对也成立,
∴,
总之, 5分
(2)将不等式变形并把代入得:
7分
设
∴
∴
又∵
∴,即. 10分
∴随的增大而增大,,
∴. 12分
21. 解:(I)即
即………………………………………………..2分
由正弦定理得:
整理得:………………………………………..4分
由余弦定理得:
又…………………………………………………………………………6分
(II)由,即
又……..8分
另一方面…………………...10分
由余弦定理得
当且仅当时取等号,所以的最小值为……………………………………………12分
22. 解:(I)由题意知.
又对,
,即在上恒成立,在上恒成立。所以即.………………………..........3分
,于是
由得或,所以的递增区间为………………….4分
(II).
。又在上是增函数,
所以原不等式.
设,只需的最小值不小于.………………………....6分
又.
所以,当时取等号,即,
解得.
又所以只需.
所以存在这样的值使得不等式成立.………………………………………………………...8分
(III)由变形得
,
令,
要使对任意的,恒有成立,
只需满足,……………………………………...10分
解得,即.……………………………………………………...12分
备选题:
设全集,函数的定义域为A,集合,若恰好有2个元素,求a的取值集合.
18.(本小题满分12分)
已知函数.
(Ⅰ)当时,若,求函数的值;
(Ⅱ)把函数的图象按向量平移得到函数的图象,若函数是偶函数,写出最小的向量的坐标.
解:(Ⅰ),
.
(Ⅱ)设,所以,要使是偶函数,
即要,即, ,
当时,最小,此时,, 即向量的坐标为
22.(本小题满分14分)
已知数列有,(常数),对任意的正整数,,并有满足.
(Ⅰ)求的值;
(Ⅱ)试确定数列是否是等差数列,若是,求出其通项公式,若不是,说明理由;
(Ⅲ)对于数列,假如存在一个常数使得对任意的正整数都有,且,则称为数列的“上渐近值”,令,求数列的“上渐近值”.
解:(Ⅰ),即
(Ⅱ)
∴是一个以为首项,为公差的等差数列。
(Ⅲ)
∴
又∵,∴数列的“上渐近值”为。
(本小题满分12分)如图,在直三棱柱ABC―A1B1C1中,∠ACB = 90°. AC = BC = a,
D、E分别为棱AB、BC的中点, M为棱AA1上的点,二面角M―DE―A为30°.
(1)求MA的长;w.w.w.k.s.5.u.c.o.m
(2)求点C到平面MDE的距离。
查看习题详情和答案>>(本小题满分12分)某校高2010级数学培优学习小组有男生3人女生2人,这5人站成一排留影。
(1)求其中的甲乙两人必须相邻的站法有多少种? w.w.w.k.s.5.u.c.o.m
(2)求其中的甲乙两人不相邻的站法有多少种?
(3)求甲不站最左端且乙不站最右端的站法有多少种 ?
查看习题详情和答案>>(本小题满分12分)
某厂有一面旧墙长14米,现在准备利用这面旧墙建造平面图形为矩形,面积为126平方米的厂房,工程条件是①建1米新墙费用为a元;②修1米旧墙的费用为元;③拆去1米旧墙,用所得材料建1米新墙的费用为元,经过讨论有两种方案: (1)利用旧墙的一段x米(x<14)为矩形厂房一面的边长;(2)矩形厂房利用旧墙的一面边长x≥14.问如何利用旧墙,即x为多少米时,建墙费用最省?(1)、(2)两种方案哪个更好?
查看习题详情和答案>>