网址:http://m.1010jiajiao.com/timu_id_13113[举报]
一、选择题:本大题共10小题,每小题5分,共50分.
题号
1
2
3
4
5
6
7
8
9
10
答案
D
A
D
A
C
B
A
C
B
C
二、填空题:本大题共4小题,每小题5分,共20分.其中12题的第一个空3分,第二
个空2分.
11.. 12.. 13.. 14..
三、解答题:本大题共6小题,共80分.解答应写出文字说明、演算步骤或推证过程.
15.解:(1) 根据题意,可知,,即. ……………………………2分
于是. ………………………………………………………………………………………………3分
将点代入,得
即. …………………………………………………………5分
满足的最小正数. ……………………………………………………………7分
从而所求的函数解析式是. ……………………………………………8分
(2)略.(振幅变换1分.周期变换、相位变换做对一个2分,全对3分) ……12分
16.解:显然是随机变量.
(1).. …………………………………6分
(2)由的期望为,得
,即. …………………9分
根据表中数据,得,即. ………………………………………………11分
联立解得. …………………………………………………………………………………………12分
17.解:(1)连结PQ,AQ.
∵△PCD为正三角形, ∴PQ⊥CD.
∵底面ABCD是∠ADC的菱形,∴AQ⊥CD.
∴CD⊥平面PAQ. ………………………………………………………………………………………………4分
∴PA⊥CD.
(2)设平面CDM交PA于N,∵CD//AB, ∴CD//平面PAB. ∴CD//MN.
由于M为PB的中点,∴N为PA的中点. 又PD=CD=AD,∴DN⊥PA.
由(1)可知PA⊥CD, ∴PA⊥平面CDM. ………………………………8分
∴平面CDM⊥平面PAB.
∵PA⊥平面CDM,联接QN、QA,则ÐAQN为AQ与平面CDM所成的角. ……10分
在RtDPMA中,AM=PM=,
∴AP=,∴AN=,sinÐAQN==.
∴ÐAQN =45°.…………………………………………………14分
(2)另解(用空间向量解):
由(1)可知PQ⊥CD,AQ⊥CD.
又由侧面PDC⊥底面ABCD,得PQ⊥AQ.
因此可以如图建立空间直角坐标系. ………………………………………………………6分
易知P(0 , 0 ,)、A(, 0 , 0)、B(, 2 , 0)、
C(0 , 1 , 0)、D(0 , -1 , 0). ………………………………………………………………………………7分
①由=(, 0 , -),=(0 , -2 , 0),得×=0.
∴PA⊥CD. ……………………………………………………………………………………………………………9分
②由M(, 1 , -),=(, 0 , -),得×=0.
∴PA⊥CM . ……………………………………………………………………10分
∴PA⊥平面CDM,即平面CDM⊥平面PAB.
从而就是平面CDM的法向量.………………………12分
设AQ与平面所成的角为q ,
则sinq =|cos<,>|=.
∴AQ与平面所成的角为45°.……………………14分
18.解:(1)根据题意,有解,
∴即. ……………………………………………………………………………3分
(2)若函数可以在和时取得极值,
则有两个解和,且满足.
易得. ………………………………………………………………………………………………6分
(3)由(2),得. ………………………………………………………………7分
根据题意,()恒成立. ……………………………………………9分
∵函数()在时有极大值(用求导的方法),
且在端点处的值为.
∴函数()的最大值为. …………………………13分
所以. …………………………………………………………………………………………………………14分
19.解:(1)由于椭圆过点,故.…………………………………1分
,横坐标适合方程
解得(即).………………………………………………………4分
即,横坐标是(即).……………………………………5分
(2)根据题意,可设抛物线方程为. …………………6分
∵,∴.………………………………………………………………7分
把和(等同于,坐标(,))代入式抛物线方
程,得. ……………………………………9分
令.……………………………………10分
则内有根(并且是单调递增函数),
∴………………………………………………………………13分
解得. …………………………………………………………………………………………14分
20.解:(1)∵f1(0)=2,a1==,fn+1(0)= f1[fn(0)]=, …………2分
∴an+1==== -= -an. ……………4分
∴数列{an}是首项为,公比为-的等比数列,∴an=()n-1. ………………5分
(2)∵T2 n = a1+
∴T2 n= (-a1)+(-)
= a 2+
两式相减,得T2 n= a1+a2+a 3+…+a2 n+na2 n. ……………………………………………………7分
∴T2n =+n×(-)2n-1=-(-)2n+(-)2n-1.
T2n =-(-)2n+(-)2n-1=(1-). ……………9分∴9T2n=1-.
又Qn=1-, ……………………………………………………………………………………………10分
当n=1时,22 n= 4,(2n+1)2=9,∴9T2 n<Q n; ……………………………………………………11分
当n=2时,22 n=16,(2n+1)2=25,∴9T2 n<Qn; …………………………………………………12分
当n≥3时,,
∴9T2 n>Q n. …………………………………………………………………………………………………………14分
①存在实数m,使得f(m)=0,且对任意实数x,恒有f(x)≥0成立;
②存在实数k (k≠0),使得f(1-k)=f(1+k)成立.
(1)求函数y=f(x)的解析式;
(2)设数列{an}的前n项和为Sn,Sn=f(n),数列{bn}满足关系式,问数列{bn}中是否存在不同的3项,使之成为等比数列?若存在,试写出任意符合条件的3项;若不存在,请说明理由.
查看习题详情和答案>>
①存在实数m,使得f(m)=0,且对任意实数x,恒有f(x)≥0成立;
②存在实数k (k≠0),使得f(1-k)=f(1+k)成立.
(1)求函数y=f(x)的解析式;
(2)设数列{an}的前n项和为Sn,Sn=f(n),数列{bn}满足关系式bn=an+2+
2 |
(本小题满分13分)已知数列{an}的前n项和为Sn,满足关系式(2+t)Sn+1-tSn=2t+4(t≠-2,t≠0,n=1,2,3,…)
(1)当a1为何值时,数列{an}是等比数列;
(2)在(1)的条件下,设数列{an}的公比为f(t),作数列{bn}使b1=1,bn=f(bn-1)(n=2,
3,4,…),求bn;
(3)在(2)条件下,如果对一切n∈N+,不等式bn+bn+1<恒成立,求实数c的取值范围.
查看习题详情和答案>>