网址:http://m.1010jiajiao.com/timu_id_12747[举报]
一、选择题
DDDCC CDAAB
二、填空题
11、 12、 13、 14、17 0 15、②③
三、解答题
16、⑴
17、(1),其定义域为.
令得.……………………………………………………2′
当时,当时,故当且仅当时,. 6′
(2)
由(1)知≤, ≥…………………………9′
又
故…………………………………………12′′18、(1)符合二项分布
0
1
2
3
4
5
6
……6′
(2)可取15,16,18.
表示胜5场负1场,;………………………………7′
表示胜5场平1场,;………………………………8′
表示6场全胜,.……………………………………………9′
∴.………………………………………………………………12(
19、解:(1)以所在直线为轴,以所在直线为轴,以所在直线为轴,建立如图所示的空间直角坐标系,由题意可知、、………2′
令 的坐标为
,
而,
是与的公垂线…………………………………………………………4′
(2)令面的法向量而,
令,则,即而面的法向量
……6′ ∴二面角的大小为.……8′
(3) 面的法向量为 到面的距离为
即到面的距离为.…………12′
20、解:(1)假设存在,使,则,同理可得,以此类推有,这与矛盾。则不存在,使.……3分
(2)∵当时,
又,,则
∴与相反,而,则.以此类推有:
,;……7分
(3)∵当时,,,则
∴ …9分
∴ ()……10分
∴.……12分
21、解(1)设则
①②
①-②得
……………………2′
直线的方程是 整理得………………4′
(2)联立解得
设
则且的方程为与联立消去,整理得
………………………………6′
又
…………………………………………8′
(3)直线的方程为,代入,得即
………………………………………………10′
三点共线,三点共线,且在抛物线的内部。
令为、为
故由可推得
而
同理可得:
而得………………………………14′
已知抛物线在x轴的正半轴上,过M的直线与C相交于A、B两点,O为坐标原点。
(I)若m=1,且直线的斜率为1,求以AB为直径的圆的方程;
(II)问是否存在定点M,不论直线绕点M如何转动,使得恒为定值。
查看习题详情和答案>>在x轴上方的线段AB交y轴正半轴于一点M(0,m),AB所在直线的斜率为k(k>0),点A在第一象限,两端点A、B到y轴的距离的差为4k.以y轴为对称轴,过A、O、B三点的抛物线记为C.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线AB的方程为x-2y+12=0,过A、B两点的圆与抛物线C在A点处有共同的切线,直线ax-by+1=0(a>0,b>0)始终平分该圆的面积,求ab的最大值.
π | 6 |
(I)写出直线l的参数方程;
(II)设l与圆ρ=2相交于两点A、B,求点P到A、B两点的距离之积. 查看习题详情和答案>>