摘要:18.解:(1)由题意可得:∵ . .
网址:http://m.1010jiajiao.com/timu_id_12183[举报]
在数列
中,
,其中
,对任意
都有:
;(1)求数列
的第2项和第3项;
(2)求数列
的通项公式
,假设
,试求数列
的前
项和
;
(3)若
对一切
恒成立,求
的取值范围。
【解析】第一问中利用)
同理得到![]()
第二问中,由题意得到:![]()
![]()
累加法得到![]()
第三问中,
利用恒成立,转化为最小值大于等于即可。得到范围。
(1)
同理得到
……2分
(2)由题意得到:![]()
![]()
又![]()
……5分
![]()
……8分
(3)![]()
查看习题详情和答案>>
下列几个命题:
①方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0;
②若函数y=
的在(-∞,1]有意义,则a=-1;
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1];
④函数y=log2(-x+1)+2的图象可由y=log2(-x-1)-2的图象向上平移4个单位,向左平移2个单位得到.
⑤若关于x方程|x2-2x-3|=m有两解,则m=0或m>4
其中正确的有 .
查看习题详情和答案>>
①方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0;
②若函数y=
| ax+1 |
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1];
④函数y=log2(-x+1)+2的图象可由y=log2(-x-1)-2的图象向上平移4个单位,向左平移2个单位得到.
⑤若关于x方程|x2-2x-3|=m有两解,则m=0或m>4
其中正确的有
下列几个命题:
①方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0;
②若函数y=
的在(-∞,1]有意义,则a=-1;
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1];
④函数y=log2(-x+1)+2的图象可由y=log2(-x-1)-2的图象向上平移4个单位,向左平移2个单位得到.
⑤若关于x方程|x2-2x-3|=m有两解,则m=0或m>4
其中正确的有______.
查看习题详情和答案>>
①方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0;
②若函数y=
| ax+1 |
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1];
④函数y=log2(-x+1)+2的图象可由y=log2(-x-1)-2的图象向上平移4个单位,向左平移2个单位得到.
⑤若关于x方程|x2-2x-3|=m有两解,则m=0或m>4
其中正确的有______.
设椭圆
:
(
)的一个顶点为
,
,
分别是椭圆的左、右焦点,离心率
,过椭圆右焦点
的直线
与椭圆
交于
,
两点.
(1)求椭圆
的方程;
(2)是否存在直线
,使得
,若存在,求出直线
的方程;若不存在,说明理由;
【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为
,即
又因为
,得到
,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合
得到结论。
解:(1)椭圆的顶点为
,即![]()
,解得
,
椭圆的标准方程为
--------4分
(2)由题可知,直线
与椭圆必相交.
①当直线斜率不存在时,经检验不合题意. --------5分
②当直线斜率存在时,设存在直线
为
,且
,
.
由
得
, ----------7分
,
,
![]()
=
所以
,
----------10分
故直线
的方程为
或
即
或![]()
查看习题详情和答案>>