网址:http://m.1010jiajiao.com/timu_id_11877[举报]
(本小题满分14分)
已知函数的极值点为和.
(Ⅰ)求实数,的值;
(Ⅱ)试讨论方程根的个数;
(Ⅲ)设,斜率为的直线与曲线交于
两点,试比较与的大小,并给予证明.
给定抛物线C:y2=4x,F是C的焦点,过点F的直线与C相交于A、B两点。
(1)设的斜率为1,求与夹角的余弦值;
(2)设,若∈[4,9],求在y轴上截距的变化范围。
给定抛物线C:F是C的焦点,过点F的直线与C相交于A、B两点.
(Ⅰ)设的斜率为1,求夹角的大小;
(Ⅱ)设,求在轴上截距的变化范围.
(Ⅰ) 已知动点到点与到直线的距离相等,求点的轨迹的方程;
(Ⅱ) 若正方形的三个顶点,,()在(Ⅰ)中的曲线上,设的斜率为,,求关于的函数解析式;
(Ⅲ) 求(2)中正方形面积的最小值。