网址:http://m.1010jiajiao.com/timu_id_115371[举报]
一、选择题:(每小题5分,共50分)
题号
1
2
3
4
5
6
7
8
9
10
答案
B
D
B
A
C
C
D
A
A
B
二、填空题:(每小题4分,共24分)
11.; 12.; 13.; 14.; 15.4 16.120
三、解答题:(共76分,以下各题为累计得分,其他解法请相应给分)
17.解:(I)
由,得。
又当时,得
(Ⅱ)当
即时函数递增。
故的单调增区间为,
又由,得,
由
解得
故使成立的的集合是
18.解:(I)设袋中有白球个,由题意得,
即
解得或(舍),故有白球6个
(法二,设黑球有个,则全是黑球的概率为 由
即,解得或(舍),故有黑球4个,白球6个
(Ⅱ),
0
1
2
3
P
故分布列为
数学期望
19.解:(I)取AB的中点O,连接OP,OC PA=PB POAB
又在中,,
在中,,又,故有
又,面ABC
又PO面PAB,面PAB面ABC
(Ⅱ)以O为坐标原点, 分别以OB,OC,OP为轴,轴,轴建立坐标系,
如图,则A
设平面PAC的一个法向量为。
得
令,则
设直线PB与平面PAC所成角为
于是
20.解:(I)由题意设C的方程为由,得。
设直线的方程为,由
②代入①化简整理得
因直线与抛物线C相交于不同的两点,
故
即,解得又时仅交一点,
(Ⅱ)设,由由(I)知
21.解:(I)当时,
设曲线与在公共点()处的切线相同,则有
即 解得或(舍)
又故得公共点为,
切线方程为 ,即
(Ⅱ),设在()处切线相同,
故有
即
由①,得(舍)
于是
令,则
于是当即时,,故在上递增。
当,即时,,故在上递减
在处取最大值。
当时,b取得最大值
22.解:(I)的对称轴为,又当时,,
故在[0,1]上是增函数
即
(Ⅱ)
由
得
①―②得 即
当时,,当时,
于是
设存在正整数,使对,恒成立。
当时,,即
当时,
。
当时,,当时,,当时,
存在正整数或8,对于任意正整数都有成立。
(Ⅰ)设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,用a表示b,并求b的最大值;
(Ⅱ)设h(x)=f(x)+g(x),证明:若a≥
3 |
h(x2)-h(x1) |
x2-x1 |
1 | 2 |
(Ⅰ)用a表示b,并求b的最大值;
(Ⅱ)求证:f(x)≥g(x)(x>0). 查看习题详情和答案>>
1 | 2 |
(1)若a=1,求b的值;
(2)用a表示b,并求b的最大值. 查看习题详情和答案>>