摘要:18.解:(I)的最大值为2..又其图象相邻两对称轴间的距离为2...过点.又∵.(II)解法一:..又的周期为4..解法二:又的周期为4..
网址:http://m.1010jiajiao.com/timu_id_10939[举报]
已知向量
=(sinωx,1),
=(
Acosωx,
cos2ωx)(A>0,ω>0),函数f(x)=
•
的最大值为3,且其图象相邻两条对称轴之间的距离为π.
(I)求函数f(x)的解析式;
(II)将函数y=f(x)的图象向左平移
个单位,再将所得图象上各点的横坐标缩短为原来的
倍,纵坐标不变,得到函数y=g(x)的图象.
(1)求函数g(x)的单调递减区间;
(2)求函数g(x)在[
,
]上的值域.
查看习题详情和答案>>
m |
n |
3 |
A |
2 |
m |
n |
(I)求函数f(x)的解析式;
(II)将函数y=f(x)的图象向左平移
π |
6 |
1 |
2 |
(1)求函数g(x)的单调递减区间;
(2)求函数g(x)在[
π |
4 |
π |
2 |
已知向量=(sinωx,1),=(ωx,ωx)(A>0,ω>0),函数f(x)=的最大值为3,且其图象相邻两条对称轴之间的距离为π.
(I)求函数f(x)的解析式;
(II)将函数y=f(x)的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图象.
(1)求函数g(x)的单调递减区间;
(2)求函数g(x)在上的值域.
查看习题详情和答案>>
(I)求函数f(x)的解析式;
(II)将函数y=f(x)的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图象.
(1)求函数g(x)的单调递减区间;
(2)求函数g(x)在上的值域.
查看习题详情和答案>>
已知向量=(sinωx,1),=(ωx,ωx)(A>0,ω>0),函数f(x)=的最大值为3,且其图象相邻两条对称轴之间的距离为π.
(I)求函数f(x)的解析式;
(II)将函数y=f(x)的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图象.
(1)求函数g(x)的单调递减区间;
(2)求函数g(x)在上的值域.
查看习题详情和答案>>
(I)求函数f(x)的解析式;
(II)将函数y=f(x)的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图象.
(1)求函数g(x)的单调递减区间;
(2)求函数g(x)在上的值域.
查看习题详情和答案>>