网址:http://m.1010jiajiao.com/timu_id_10628[举报]
已知函数
(Ⅰ)求函数的最小正周期;
(Ⅱ)求函数在区间上的最大值和最小值.
【解析】(1)
所以,的最小正周期
(2)因为在区间上是增函数,在区间上是减函数,
又,,,
故函数在区间上的最大值为,最小值为-1.
查看习题详情和答案>>
函数在同一个周期内,当 时,取最大值1,当时,取最小值。
(1)求函数的解析式
(2)函数的图象经过怎样的变换可得到的图象?
(3)若函数满足方程求在内的所有实数根之和.
【解析】第一问中利用
又因
又 函数
第二问中,利用的图象向右平移个单位得的图象
再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,
第三问中,利用三角函数的对称性,的周期为
在内恰有3个周期,
并且方程在内有6个实根且
同理,可得结论。
解:(1)
又因
又 函数
(2)的图象向右平移个单位得的图象
再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,
(3)的周期为
在内恰有3个周期,
并且方程在内有6个实根且
同理,
故所有实数之和为
查看习题详情和答案>>
已知函数(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.
(1)求的解析式; (2)当,求的值域.
【解析】第一问利用三角函数的性质得到)由最低点为得A=2. 由x轴上相邻的两个交点之间的距离为得=,即,由点在图像上的
第二问中,
当=,即时,取得最大值2;当
即时,取得最小值-1,故的值域为[-1,2]
查看习题详情和答案>>
在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=
(Ⅰ)求角B的大小;
(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1), 有最大值为3,求k的值.
【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用
第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,
即,又由余弦定理=2acosB,所以cosB=,B=
第二问中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A
=2ksinA+-=-+2ksinA+=-+ (k>1).
而0<A<,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-=3,得k=.
查看习题详情和答案>>