网址:http://m.1010jiajiao.com/timu_id_105637[举报]
一、选择题
2,4,6
2.C 解析:由 不符合集合元素的互异性,故选C。
3.D 解析:
4.A 解析:由题可知,故选A.
5.C 解析:令公比为q,由a1=3,前三项的和为21可得q2+q-6=0,各项都为正数,所以q=2,所以,故选C.
6.D 解析:上恒成立,即恒成立,故选D.
7.B 解析:因为定义在R上函数是偶函数,所以,故函数以4为周期,所以
8.C 解析:关于y轴的对称图形,可得的
图象,再向右平移一个单位,即可得的图象,即的图
象,故选C.
9.B 解析:可采取特例法,例皆为满足条件的函数,一一验证可知选B.
10.A 解析:故在[-2,2]上最大值为,所以最小值为,故选A.
二、填空题:
11.答案:6 解析:∵ ∴a7+a11=6.
12.答案A=120° 解析:
13.答案:28 解析:由前面图形规律知,第6个图中小正方形的数量为1+2+3+…+7=28。
三、解答题:
15.解:(Ⅰ),, 令
3m=1 ∴ ∴
∴{an+}是以为首项,4为公比的等比数列
(Ⅱ)
∴
16.解:(Ⅰ)
当时,的最小值为3-4
(Ⅱ)∵ ∴
∴时,单调减区间为
17.解:(Ⅰ)的定义域关于原点对称
若为奇函数,则 ∴a=0
∴在上
∴在上单调递增
∴在上恒大于0只要大于0即可
若在上恒大于0,a的取值范围为
18.解:(Ⅰ)延长RP交AB于M,设∠PAB=,则
AM =90
=10000-
∴当时,SPQCR有最大值
答:长方形停车场PQCR面积的最磊值为平方米。
19.解:(Ⅰ)【方法一】由,
依题设可知,△=(b+1)2-4c=0.
∵.
【方法二】依题设可知
∴为切点横坐标,
于是,化简得
同法一得
(Ⅱ)由
可得
令依题设欲使函数内有极值点,
则须满足
亦即 ,
又
故存在常数,使得函数内有极值点.
(注:若,则应扣1分. )
20.解:(Ⅰ)设函数
(Ⅱ)由(Ⅰ)可知
可知使恒成立的常数k=8.
(Ⅲ)由(Ⅱ)知
可知数列为首项,8为公比的等比数列
即以为首项,8为公比的等比数列. 则
.
已知函数,若存在,则
称是函数的一个不动点,设
(Ⅰ)求函数的不动点;
(Ⅱ)对(Ⅰ)中的二个不动点、(假设),求使
恒成立的常数的值;
已知函数,若存在使得恒成立,则称 是的
一个“下界函数” .
(I)如果函数(t为实数)为的一个“下界函数”,
求t的取值范围;
(II)设函数,试问函数是否存在零点,若存在,求出零点个数;
若不存在,请说明理由.
已知函数,若存在使得恒成立,则称 是的一个“下界函数” .(I)如果函数(t为实数)为的一个“下界函数”,求t的取值范围;(II)设函数,试问函数是否存在零点,若存在,求出零点个数;若不存在,请说明理由.
已知函数,若存在实数则称是函数的一个不动点.
(I)证明:函数有两个不动点;
(II)已知a、b是的两个不动点,且.当时,比较
的大小;
(III)在数列中,,等式对任何正整数n都成立,求数列的通项公式.