摘要:利用一元二次方程根与系数的关系易得:
网址:http://m.1010jiajiao.com/timu_id_105608[举报]
若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2=
.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:
AB=|x1-x2|==
=
=
.
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.
查看习题详情和答案>>
若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-
,x1•x2=
.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:
AB=|x1-x2|=
=
=
=
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232245260323243.jpg)
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224525688396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224525938354.png)
AB=|x1-x2|=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224525954784.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224525969936.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224526000691.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224526016673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232245260323243.jpg)
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.