摘要:③若a≥4时.得f (x)在上的最小值.此时>0恒成立.
网址:http://m.1010jiajiao.com/timu_id_102386[举报]
已知函数f(x)=
在区间[m,n]上为增函数,且f(m)f(n)=-4.
(1)当a=3时,求m,n的值;
(2)当f(n)-f(m)最小时,
①求a的值;
②若P(x1,y1),Q(x2,y2)(a<x1<x2<n)是f(x)图象上的两点,且存在实数x0使得f′(x0)=
,证明:x1<x0<x2.
查看习题详情和答案>>
4x-a |
1+x2 |
(1)当a=3时,求m,n的值;
(2)当f(n)-f(m)最小时,
①求a的值;
②若P(x1,y1),Q(x2,y2)(a<x1<x2<n)是f(x)图象上的两点,且存在实数x0使得f′(x0)=
f(x2)-f(x1) |
x2-x1 |
已知函数f(x)=
的单调递增区间为[m,n]
(1)求证f(m)f(n)=-4;
(2)当n-m取最小值时,点p(x1,y1),Q(x2,y2)(a<x1<x2<n),是函数f(x)图象上的两点,若存在x0使得f′(x0)=
,x求证x1<|x0|<x2.
查看习题详情和答案>>
4x+a |
1+x2 |
(1)求证f(m)f(n)=-4;
(2)当n-m取最小值时,点p(x1,y1),Q(x2,y2)(a<x1<x2<n),是函数f(x)图象上的两点,若存在x0使得f′(x0)=
f(x2)-f(x1) |
x2-x1 |