题目内容
已知函数f(x)=
的单调递增区间为[m,n]
(1)求证f(m)f(n)=-4;
(2)当n-m取最小值时,点p(x1,y1),Q(x2,y2)(a<x1<x2<n),是函数f(x)图象上的两点,若存在x0使得f′(x0)=
,x求证x1<|x0|<x2.
4x+a |
1+x2 |
(1)求证f(m)f(n)=-4;
(2)当n-m取最小值时,点p(x1,y1),Q(x2,y2)(a<x1<x2<n),是函数f(x)图象上的两点,若存在x0使得f′(x0)=
f(x2)-f(x1) |
x2-x1 |
分析:(1)f′(x)=
,依题意,m,n是方程-4x2-2ax+4=0的两根,由此能够证明f(m)f(n)=-4.
(2)由n-m=
≥2,知n-m取最小值时,a=0,n=1,m=-1,由f(x)在[-1,1]是增函数,0<x1<x2<1,知f′(x0)=
>0,从而x0∈(-1,1).由此入手,结合题设条件能够证明x1<|x0|<x2.
-4x2-2ax+4 |
(1+x2)2 |
(2)由n-m=
|
f(x2)-f(x1) |
x2-x1 |
解答:解:(1)f′(x)=
,
依题意,m,n是方程-4x2-2ax+4=0的两根,
∴
,
f(m)f(n)=
•
=
=
=-4.
(2)∵n-m=
=
≥2,
∴n-m取最小值时,a=0,n=1,m=-1,
∵f(x)在[-1,1]是增函数,0<x1<x2<1,
∴f′(x0)=
>0,从而x0∈(-1,1).
f′(x0)=
=
=
,
即
=
.
∵(1+x12)(1+x22)=x12x22+x12+x22+1
>(x1x2)2+2x1x2+1
=(1+x1x2)2,
∴
=
<
.
设g(x)=
,则g′(x)=
,
∴当x∈(0,1)时,有g′(x)<0,
∴g(x)是(0,1)上的减函数.
∴由g(x 02)<g(x1x2),得x02>x1x2>x 12,∴|x0|>x1.
由
=
,及0<1-x 02<1-x1x2,
得(1+x02)2<(1+x12)(1+x22)<(1+x22)2,
故1+x02<1+x22,即|x0|<x2,
∴x1<|x0|<x2.
-4x2-2ax+4 |
(1+x2)2 |
依题意,m,n是方程-4x2-2ax+4=0的两根,
∴
|
f(m)f(n)=
4m+a |
1+m2 |
4n+a |
1+n2 |
=
16mn+4a(m+n)+a2 |
(mn)2+(m+n)2-2mn+1 |
=
-(16+a2) | ||
|
(2)∵n-m=
(m+n)2-4x1x2 |
=
|
∴n-m取最小值时,a=0,n=1,m=-1,
∵f(x)在[-1,1]是增函数,0<x1<x2<1,
∴f′(x0)=
f(x2)-f(x1) |
x2-x1 |
f′(x0)=
4(1-x02) |
(1+x02)2 |
f(x2)-f(x1) |
x2-x1 |
4(1-x1x2) |
(1+x12)(1+x22) |
即
(1-x02) |
(1+x02)2 |
1-x1x2 |
(1+x12)(1+x22) |
∵(1+x12)(1+x22)=x12x22+x12+x22+1
>(x1x2)2+2x1x2+1
=(1+x1x2)2,
∴
1-x02 |
(1+x02)2 |
1-x1x2 |
(1+x12)(1+x22) |
1-x1x2 |
(1+x1x2)2 |
设g(x)=
1-x |
(1+x)2 |
(x-1)2-2 |
(1+x)4 |
∴当x∈(0,1)时,有g′(x)<0,
∴g(x)是(0,1)上的减函数.
∴由g(x 02)<g(x1x2),得x02>x1x2>x 12,∴|x0|>x1.
由
1-x02 |
(1+x02)2 |
1-x1x2 |
(1+x12)(1+x22) |
得(1+x02)2<(1+x12)(1+x22)<(1+x22)2,
故1+x02<1+x22,即|x0|<x2,
∴x1<|x0|<x2.
点评:本题考查函数恒成立问题的应用,解题时要注意韦达定理、导数性质、函数单调性、等价转化思想等知识点的合理运用.
练习册系列答案
相关题目
已知函数f(x)=
,则它是( )
| ||
|x-3|-3 |
A、奇函数 | B、偶函数 |
C、既奇又偶函数 | D、非奇非偶函数 |