题目内容

已知函数f(x)=
4x+a
1+x2
的单调递增区间为[m,n]
(1)求证f(m)f(n)=-4;
(2)当n-m取最小值时,点p(x1,y1),Q(x2,y2)(a<x1<x2<n),是函数f(x)图象上的两点,若存在x0使得f′(x0)=
f(x2)-f(x1)
x2-x1
,x求证x1<|x0|<x2
分析:(1)f′(x)=
-4x2-2ax+4
(1+x2)2
,依题意,m,n是方程-4x2-2ax+4=0的两根,由此能够证明f(m)f(n)=-4.
(2)由n-m=
a2
4
+4
≥2
,知n-m取最小值时,a=0,n=1,m=-1,由f(x)在[-1,1]是增函数,0<x1<x2<1,知f(x0)=
f(x2)-f(x1)
x2-x1
>0,从而x0∈(-1,1).由此入手,结合题设条件能够证明x1<|x0|<x2
解答:解:(1)f′(x)=
-4x2-2ax+4
(1+x2)2

依题意,m,n是方程-4x2-2ax+4=0的两根,
m+n=-
a
2
mn=-1

f(m)f(n)=
4m+a
1+m2
4n+a
1+n2

=
16mn+4a(m+n)+a2
(mn)2+(m+n)2-2mn+1

=
-(16+a2)
a2
4
+4
=-4.
(2)∵n-m=
(m+n)2-4x1x2

=
a2
4
+4
≥2

∴n-m取最小值时,a=0,n=1,m=-1,
∵f(x)在[-1,1]是增函数,0<x1<x2<1,
f(x0)=
f(x2)-f(x1)
x2-x1
>0,从而x0∈(-1,1).
f′(x0)=
4(1-x02)
(1+x02)2
=
f(x2)-f(x1)
x2-x1
=
4(1-x1x2)
(1+x12)(1+x22)

(1-x02)
(1+x02)2
=
1-x1x2
(1+x12)(1+x22)

(1+x12)(1+x22)=x12x22+x12+x22+1
>(x1x22+2x1x2+1
=(1+x1x2)2
1-x02
(1+x02)2
=
1-x1x2
(1+x12)(1+x22)
1-x1x2
(1+x1x2)2

设g(x)=
1-x
(1+x)2
,则g′(x)=
(x-1)2-2
(1+x)4

∴当x∈(0,1)时,有g′(x)<0,
∴g(x)是(0,1)上的减函数.
∴由g(x 02)<g(x1x2),得x02>x1x2>x 12,∴|x0|>x1
1-x02
(1+x02)2
=
1-x1x2
(1+x12)(1+x22)
,及0<1-x 02<1-x1x2
(1+x02)2<(1+x12)(1+x22)(1+x22)2
故1+x02<1+x22,即|x0|<x2
∴x1<|x0|<x2
点评:本题考查函数恒成立问题的应用,解题时要注意韦达定理、导数性质、函数单调性、等价转化思想等知识点的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网