摘要:例3.设函数f ∪(0,1]上的奇函数.当x∈.求当x∈时f 在区间上为增函数.求a的取值范围,(3)求在上f (x)的最大值.
网址:http://m.1010jiajiao.com/timu_id_102203[举报]
设函数f(x)是定义在R上的增函数,且f(x)≠0,对于任意x1、x2∈R,都有f(x1+x2)=f(x1)·f(x2).
(1)求证:f(x1-x2)=;
(2)若f(1)=2,解不等式f(3x)>4f(x).
查看习题详情和答案>>设函数f(x)是定义在R上的增函数,且f(x)≠0,对于任意x1、x2∈R,都有f(x1+x2)=f(x1)·f(x2).
(1)求证:f(x1-x2)=;
(2)若f(1)=2,解不等式f(3x)>4f(x).
(1)求证:f(x1-x2)=;
(2)若f(1)=2,解不等式f(3x)>4f(x).
设函数f ( x )的定义域、值域均为R,f ( x ) 反函数为f1 ( x ),且对任意实数x,均有f ( x ) + f1 ( x )<。定义数列{an} : a0 = 8 , a1 = 10 , an = f (an1 ) , n = 1, 2 , … .
(1)求证:an+1 + an1<an ( n = 1 , 2 , … ) ;
(2)设求证:;
(3)是否存在常数A和B,同时满足;
①当n = 0 及n = 1 时,有an =成立;
②当n = 2 , 3, … 时,有an<成立。
如果存在满足上述条件的实数A、B的值;如果不存在,证明你的结论。
查看习题详情和答案>>