网址:http://m.1010jiajiao.com/timu_id_102117[举报]
【解析】若,必有.构造函数:,则恒成立,故有函数在x>0上单调递增,即a>b成立.其余选项用同样方法排除.
【答案】A
【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C是正确的.
【答案】C
【答案】
【解析】设,有几何意义知的最小值为, 又因为存在实数x满足,所以只要2大于等于f(x)的最小值即可.即2,解得:∈,所以a的取值范围是.故答案为:.
解不等式:
【解析】本试题主要是考查了分段函数与绝对值不等式的综合运用。利用零点分段论 的思想,分为三种情况韬略得到解集即可。也可以利用分段函数图像来解得。
解:方法一:零点分段讨论: 方法二:数形结合法:
已知函数,,其中.
(1)若是函数的极值点,求实数的值;
(2)若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围.
【解析】(1)根据建立关于a的方程求a即可.
(2)本题要分别求出f(x)在[1,e]上的最小值,g(x)在[1,e]上的最大值,然后
,解关于a的不等式即可.