8、已知函数,当点的图像上移动时,

在函数的图像上移动.

(1) 若点P坐标为(),点Q也在的图像上,求的值;

(2) 求函数的解析式;

(3) 当时,试探求一个函数使得在限定定义域为

时有最小值而没有最大值.

解:(1)当点坐标为(),点的坐标为,…………2分 ∵点也在的图像上,∴,即.……5分

(根据函数的单调性求得,请相应给分) (2)设的图像上 则,即   ……………………………………8分 而的图像上,∴ 代入得,为所求.…………………………………11分

(3);或  等.   …………………15分 如:当时,

单调递减,  ∴   故 , 即有最小值,但没有最大值.………………………18分

(其他答案请相应给分)

(参考思路)在探求时,要考虑以下因素:①上必须有意义(否则不能参加与的和运算);②由于都是以为底的对数,所以构造的函数可以是以为底的对数,这样与进行的运算转化为真数的乘积运算;③以为底的对数是减函数,只有当真数取到最大值时,对数值才能取到最小值;④为方便起见,可以考虑通过乘积消去;⑤乘积的结果可以是的二次函数,该二次函数的图像的对称轴应在直线的左侧(否则真数会有最小值,对数就有最大值了),考虑到该二次函数的图像与轴已有了一个公共点,故对称轴又应该是轴或在轴的右侧(否则该二次函数的值在上的值不能恒为正数),即若抛物线与轴的另一个公共点是,则,且抛物线开口向下.

 0  53913  53921  53927  53931  53937  53939  53943  53949  53951  53957  53963  53967  53969  53973  53979  53981  53987  53991  53993  53997  53999  54003  54005  54007  54008  54009  54011  54012  54013  54015  54017  54021  54023  54027  54029  54033  54039  54041  54047  54051  54053  54057  54063  54069  54071  54077  54081  54083  54089  54093  54099  54107  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网