摘要:22. 设椭圆过点G(,1).且左焦点为. (Ⅰ)求椭圆的方程, (Ⅱ)是否存在过点E的直线m交椭圆C于点M.N边.使△MON 的面 积为 (O为原点).若存在.求直线m的方程,若不存在.请说明理由, (Ⅲ)当过点P(4.1)的动直线与椭圆C相交与两不同点A.B时.在线段上取点.满足∣∣•∣∣=∣∣•∣∣.求证:点总在某定直线上.
网址:http://m.1010jiajiao.com/timu3_id_534831[举报]
(本小题满分14分)
设
椭圆方程为
抛物线方程为
如图4所示,过点
作
轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点![]()
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。
![]()
(本小题满分14分)
设
椭圆方程为
抛物线方程为
如图4所示,过点
作
轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点![]()
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。
![]()
查看习题详情和答案>>
(本小题满分14分)
设
椭圆方程为
抛物线方程为
如图4所示,过点
作
轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。
设
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得