摘要:21.(本大题满分18分.第1小题4分.第2小题6分.第3小题8分) 如图.在直角坐标系中.有一组对角线长为的正方形.其对角线依次放置在轴上. 设是首项为.公差为的等差数列.点的坐标为. (1)当时.证明:顶点不在同一条直线上, 的条件下.证明:所有顶点均落在抛物线上, (3)为使所有顶点均落在抛物线上.求与之间所应满足的关系式.
网址:http://m.1010jiajiao.com/timu3_id_534741[举报]
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设
,对于项数为
的有穷数列
,令
为
中最大值,称数列
为
的“创新数列”.例如数列
3,5,4,7的创新数列为3,5,5,7.
考查自然数
的所有排列,将每种排列都视为一个有穷数列
.
(1)若
,写出创新数列为3,4,4,4的所有数列
;
(2)是否存在数列
的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由.
(3)是否存在数列
,使它的创新数列为等差数列?若存在,求出满足所有条件的数列
的个数;若不存在,请说明理由.
查看习题详情和答案>>
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设
,对于项数为
的有穷数列
,令
为
中最大值,称数列
为
的“创新数列”.例如数列
3,5,4,7的创新数列为3,5,5,7.
考查自然数
的所有排列,将每种排列都视为一个有穷数列
.
(1)若
,写出创新数列为3,4,4,4的所有数列
;
(2)是否存在数列
的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由.
(3)是否存在数列
,使它的创新数列为等差数列?若存在,求出满足所有条件的数列
的个数;若不存在,请说明理由.
设
考查自然数
(1)若
(2)是否存在数列
(3)是否存在数列
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分8分.
记函数
在区间D上的最大值与最小值分别为
与
.设函数
,
.
.
(1)若函数
在
上单调递减,求
的取值范围;
(2)若
.令
.
记
.试写出
的表达式,并求
;
(3)令
(其中I为
的定义域).若I恰好为
,求b的取值范围,并求
.
查看习题详情和答案>>