网址:http://m.1010jiajiao.com/timu3_id_533759[举报]
在数列中,.
(1)求数列的通项;
(2)若对任意的整数恒成立,求实数的取值范围;
(3)设数列,的前项和为,求证:
在数列中,,,且().
(Ⅰ)设(),证明是等比数列;
(Ⅱ)求数列的通项公式;
(Ⅲ)若是与的等差中项,求的值,并证明:对任意的,是与 的等差中项.
在数列中,,其中,对任意都有:;(1)求数列的第2项和第3项;
(2)求数列的通项公式,假设,试求数列的前项和;
(3)若对一切恒成立,求的取值范围。
【解析】第一问中利用)同理得到
第二问中,由题意得到:
累加法得到
第三问中,利用恒成立,转化为最小值大于等于即可。得到范围。
(1)同理得到 ……2分
(2)由题意得到:
又
……5分
……8分
(3)