摘要:12. 过点P(1,1)作一直线与抛物线交于A.B两点.过A.B两点分别作抛物线的切线.设两切线的交点为M.则点M的轨迹方程为 A. B. C. D.
网址:http://m.1010jiajiao.com/timu3_id_532323[举报]
| p | 2 |
(1)求证:直线AB的斜率为定值;
(2)已知A、B两点均在抛物线C:y2=2px(y≤0)上,若△MAB的面积的最大值为6,求抛物线的方程. 查看习题详情和答案>>
(1)试证明A,B两点的纵坐标之积为定值;
(2)若点N是定直线l:x=-m上的任意一点,分别记直线AN,MN,BN的斜率为k1、k2、k3,
试求k1、k2、k3之间的关系,并给出证明. 查看习题详情和答案>>
对抛物线C:x2=4y,有下列命题:
①设直线l:y=kx+l,则直线l被抛物线C所截得的最短弦长为4;
②已知直线l:y=kx+l交抛物线C于A,B两点,则以AB为直径的圆一定与抛物线的准线相切;
③过点P(2,t)(t∈R)与抛物线有且只有一个交点的直线有1条或3条;
④若抛物线C的焦点为F,抛物线上一点Q(2,1)和抛物线内一点R(2,m)(m>1),过点Q作抛物线的切线l1,直线l2过点Q且与l1垂直,则l2一定平分∠RQF.
其中你认为是真命题的所有命题的序号是
查看习题详情和答案>>
①设直线l:y=kx+l,则直线l被抛物线C所截得的最短弦长为4;
②已知直线l:y=kx+l交抛物线C于A,B两点,则以AB为直径的圆一定与抛物线的准线相切;
③过点P(2,t)(t∈R)与抛物线有且只有一个交点的直线有1条或3条;
④若抛物线C的焦点为F,抛物线上一点Q(2,1)和抛物线内一点R(2,m)(m>1),过点Q作抛物线的切线l1,直线l2过点Q且与l1垂直,则l2一定平分∠RQF.
其中你认为是真命题的所有命题的序号是
①②④
①②④
.