摘要:若一动圆M过圆C:的圆心C.且与直线y=2相切.则动圆圆心M的轨迹方程为( ) A. B. C. D.
网址:http://m.1010jiajiao.com/timu3_id_532173[举报]
若椭圆C:
的离心率e为
,且椭圆C的一个焦点与抛物线y2=-12x的焦点重合.
(1)求椭圆C的方程;
(2)设点M(2,0),点Q是椭圆上一点,当|MQ|最小时,试求点Q的坐标;
(3)设P(m,0)为椭圆C长轴(含端点)上的一个动点,过P点斜率为k的直线l交椭圆与A,B两点,若|PA|2+|PB|2的值仅依赖于k而与m无关,求k的值.
查看习题详情和答案>>
已知一动圆M,恒过点F(1,0),且总与直线l:x=﹣1相切.
(1)求动圆圆心M的轨迹C的方程;
(2)探究在曲线C上,是否存在异于原点的A(x1,y1),B(x2,y2)两点,当y1y2=﹣16时,直线AB恒过定点?若存在,求出定点坐标;若不存在,说明理由.
查看习题详情和答案>>
(1)求动圆圆心M的轨迹C的方程;
(2)探究在曲线C上,是否存在异于原点的A(x1,y1),B(x2,y2)两点,当y1y2=﹣16时,直线AB恒过定点?若存在,求出定点坐标;若不存在,说明理由.