摘要:22. 设抛物线的焦点为.经过点的直线交抛物线于 两点.是抛物线的准线上的一点.是坐标原点.若直线的斜率分别记为. (1)若.求抛物线的方程 (2)当时.求的值 金华十校2009年高考模拟考试(3月)试卷
网址:http://m.1010jiajiao.com/timu3_id_531753[举报]
(本小题满分14分)设b>0,椭圆方程为
,抛物线方程为
.如图4所示,过点F(0,b+2)作x轴的平行线,与抛物线在
第一象限的交点为G.已知抛物线在点G的切线经
过椭圆的右焦点
.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在
抛物线上是否存在点P,使得△ABP为直角三角形?
若存在,请指出共有几个这样的点?并说明理由
(不必具体求出这些点的坐标).
查看习题详情和答案>>(本小题满分14分)
在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对
称图形),其中矩形
的三边
、
、
由长6分米的材料弯折而成,
边的长
为
分米(
);曲线
拟从以下两种曲线中选择一种:曲线
是一段余弦曲线
(在如图所示的平面直角坐标系中,其解析式为
),此时记门的最高点
到![]()
边的距离为
;曲线
是一段抛物线,其焦点到准线的距离为
,此时记门的最高点![]()
到
边的距离为
.
(1)试分别求出函数
、
的表达式;
(2)要使得点
到
边的距离最大,应选用哪一种曲线?此时,最大值是多少?
查看习题详情和答案>>
(本小题满分14分)
在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对
称图形),其中矩形
的三边
、
、
由长6分米的材料弯折而成,
边的长
为
分米(
);曲线
拟从以下两种曲线中选择一种:曲线
是
一段余弦曲线
(在如图所示的平面直角坐标系中,其解析式为
),此时记门的最高点
到
边的距离为
;曲线
是一段抛物线,其焦点到准线的距离为
,此时记门的最高点
到
边的距离为
.
(1)试分别求出函数
、
的表达式;
(2)要使得点
到
边的距离最大,应选用哪一种曲线?此时,最大值是多少?
在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对
称图形),其中矩形
为
(在如图所示的平面直角坐标系中,其解析式为
边的距离为
到
(1)试分别求出函数
(2)要使得点