摘要:20. 已知函数 (Ⅰ)试判断在定义域上的单调性, (Ⅱ)当时.求证
网址:http://m.1010jiajiao.com/timu3_id_524491[举报]
(本小题满分16分)
已知函数
和函数
,记
.
(1)当
时,若
在
上的最大值是
,求实数
的取值范围;
(2)当
时,判断
在其定义域内是否有极值,并予以证明;
(3)对任意的
,若
在其定义域内既有极大值又有极小值,试求实数
的取值范围.
(本小题满分16分)已知函数
的图象在
上连续不断,定义:
,![]()
其中,
表示函数
在区间上的最小值,
表示函数
在区间上的最大值.若存在最小正整数
,使得
对任意的
成立,则称函数为区间
上的“
阶收缩函数”.
(1)若
,试写出
的表达式;
(2)已知函数
试判断
是否为
上的“
阶收缩函数”,如果是,求出相应的
;如果不是,请说明理由;
(3)已知
函数
是
上的2阶收缩函数,求
的取值范围.
查看习题详情和答案>>