摘要:[两角和与差的三角函数练习1]
网址:http://m.1010jiajiao.com/timu3_id_523215[举报]
阅读下面材料:
根据两角和与差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
α+β=A,α-β=B 有α=
,β=
代入③得 sinA+cosB=2sin
cos
.
(1)类比上述推理方法,根据两角和与差的余弦公式,证明:cosA-cosB=-2sin
sin
;
(2)若△ABC的三个内角A,B,C满足cos2A+cox2C-cos2B=1,直接利用阅读材料及(1)中的结论试判断△ABC的形状.
查看习题详情和答案>>
根据两角和与差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
α+β=A,α-β=B 有α=
| A+B |
| 2 |
| A-B |
| 2 |
代入③得 sinA+cosB=2sin
| A+B |
| 2 |
| A-B |
| 2 |
(1)类比上述推理方法,根据两角和与差的余弦公式,证明:cosA-cosB=-2sin
| A+B |
| 2 |
| A-B |
| 2 |
(2)若△ABC的三个内角A,B,C满足cos2A+cox2C-cos2B=1,直接利用阅读材料及(1)中的结论试判断△ABC的形状.
(2012•长春一模)类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=ax-a-x,C(x)=ax+a-x,其中a>0,且a≠1,下面正确的运算公式是:( )
①S(x+y)=S(x)C(y)+C(x)S(y);②S(x-y)=S(x)C(y)-C(x)S(y);
③2S(x+y)=S(x)C(y)+C(x)S(y);④2S(x-y)=S(x)C(y)-C(x)S(y).
①S(x+y)=S(x)C(y)+C(x)S(y);②S(x-y)=S(x)C(y)-C(x)S(y);
③2S(x+y)=S(x)C(y)+C(x)S(y);④2S(x-y)=S(x)C(y)-C(x)S(y).
查看习题详情和答案>>
类比“两角和与差的正余弦公式”的形式,对于给定的两个函数,S(x)=
,C(x)=
,其中a>0,且a≠1,下面正确的运算公式是 .
①S(x+y)=S(x)C(y)+C(x)S(y); ②S(x-y)=S(x)C(y)-C(x)S(y);
③C(x+y)=C(x)C(y)-S(x)S(y); ④C(x-y)=C(x)C(y)+S(x)S(y). 查看习题详情和答案>>
| ax-a-x |
| 2 |
| ax+a-x |
| 2 |
①S(x+y)=S(x)C(y)+C(x)S(y); ②S(x-y)=S(x)C(y)-C(x)S(y);
③C(x+y)=C(x)C(y)-S(x)S(y); ④C(x-y)=C(x)C(y)+S(x)S(y). 查看习题详情和答案>>
阅读下面材料:
根据两角和与差的正弦公式,有:
sin(α+β)=sinαcosβ+cosαsinβ…①
sin(α-β)=sinαcosβ-cosαsinβ…②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ…③
令α+β=A,α-β=B有α=
,β=
代入③得sinA+sinB=2sin
cos
.
(Ⅰ)类比上述推理方法,根据两角和与差的余弦公式,证明:cosA-cosB=-2sin
sin
;
(Ⅱ)若△ABC的三个内角A,B,C满足cos2A-cos2B=1-cos2C,试判断△ABC的形状.(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)
查看习题详情和答案>>
根据两角和与差的正弦公式,有:
sin(α+β)=sinαcosβ+cosαsinβ…①
sin(α-β)=sinαcosβ-cosαsinβ…②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ…③
令α+β=A,α-β=B有α=
| A+B |
| 2 |
| A-B |
| 2 |
代入③得sinA+sinB=2sin
| A+B |
| 2 |
| A-B |
| 2 |
(Ⅰ)类比上述推理方法,根据两角和与差的余弦公式,证明:cosA-cosB=-2sin
| A+B |
| 2 |
| A-B |
| 2 |
(Ⅱ)若△ABC的三个内角A,B,C满足cos2A-cos2B=1-cos2C,试判断△ABC的形状.(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)