题目内容
类比“两角和与差的正余弦公式”的形式,对于给定的两个函数,S(x)=ax-a-x |
2 |
ax+a-x |
2 |
①S(x+y)=S(x)C(y)+C(x)S(y); ②S(x-y)=S(x)C(y)-C(x)S(y);
③C(x+y)=C(x)C(y)-S(x)S(y); ④C(x-y)=C(x)C(y)+S(x)S(y).
分析:写出“两角和与差的正余弦公式”的形式,写出类比结论.
解答:解:∵“两角和与差的正余弦公式”的形式是
sin(x+y)=sinxcosy+cosxsiny
sin(x-y)=sinxcosy-cosxsiny
cos(x+y)=cosxcosy-sinxsiny
cos(x-y)=cosxcosy+sinxsiny
对于 S(x)=
,C(x)=
有类比结论S(x+y)=S(x)C(y)+C(x)S(y);S(x-y)=S(x)C(y)-C(x)S(y);
C(x+y)=C(x)C(y)-S(x)S(y);C(x-y)=C(x)C(y)+S(x)S(y);
故答案为:①②③④
sin(x+y)=sinxcosy+cosxsiny
sin(x-y)=sinxcosy-cosxsiny
cos(x+y)=cosxcosy-sinxsiny
cos(x-y)=cosxcosy+sinxsiny
对于 S(x)=
ax-a-x |
2 |
ax+a-x |
2 |
有类比结论S(x+y)=S(x)C(y)+C(x)S(y);S(x-y)=S(x)C(y)-C(x)S(y);
C(x+y)=C(x)C(y)-S(x)S(y);C(x-y)=C(x)C(y)+S(x)S(y);
故答案为:①②③④
点评:本题考查利用类比推理从形式上写出类比结论.写类比结论时:先找类比对象,再找类比元素.

练习册系列答案
相关题目