摘要:加大推理.论证能力的考查力度.充分体现由知识立意向能力立意转变的命题方向.由于代数推理没有几何图形作依托.因而更能检测出学生抽象思维能力的层次.这类代数推理问题常以高中代数的主体内容--函数.方程.不等式.数列及其交叉综合部分为知识背景.并与高等数学知识及思想方法相衔接.立意新颖.抽象程度高.有利于高考选拔功能的充分发挥.对不等式的考查更能体现出高观点.低设问.深入浅出的特点.考查容量之大.功能之多.能力要求之高.一直是高考的热点.
网址:http://m.1010jiajiao.com/timu3_id_523166[举报]
(本小题满分13分)
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线
,使得直线
与椭圆C有公共点,且直线OA与
的距离等于4?若存在,求出直线
的方程;若不存在,请说明理由。
【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。
查看习题详情和答案>>(本小题满分13分)
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线
,使得直线
与椭圆C有公共点,且直线OA与
的距离等于4?若存在,求出直线
的方程;若不存在,请说明理由。
【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。
查看习题详情和答案>>如图,在四棱锥P-ABCD中,底面ABCD是矩形,
,BC=1,
,PD=CD=2.
(I)求异面直线PA与BC所成角的正切值;
(II)证明平面PDC⊥平面ABCD;
(III)求直线PB与平面ABCD所成角的正弦值。

【考点定位】本小题主要考查异面直线所成的角、平面与平面垂直、直线与平面所成的角等基础知识.,考查空间想象能力、运算求解能力和推理论证能力.
(I)求异面直线PA与BC所成角的正切值;
(II)证明平面PDC⊥平面ABCD;
(III)求直线PB与平面ABCD所成角的正弦值。
【考点定位】本小题主要考查异面直线所成的角、平面与平面垂直、直线与平面所成的角等基础知识.,考查空间想象能力、运算求解能力和推理论证能力.