摘要:要证两平面相互垂直.只需找出这两个平面的两个法向量.证明这两个法向量相互垂直. 例9. 如右图.△ABC是一个正三角形.EC⊥平面ABC. BD∥CE.且CE=CA=2BD.M是EA的中点. E 求证:(1)DE=DA, M D (2)平面BDM⊥平面ECA, C B (3)平面DEA⊥平面ECA, A 分析(3):建立如图所示右手直角坐标系 .不妨设CA=2.则CE=2.BD=1.C.A(.1.0).B.D. . . . 分别假设面CEA与面DEA的法向量是..所以得 不妨取..从而计算得.所以两个法向量相互垂直.两个平就相互垂直. 事实证明.法向量在求角.距离以及证明平行垂直中都有非常广泛的应用.它在中学数学中的出现.是对传统的立体几何知识一个很好的补充及加深.
网址:http://m.1010jiajiao.com/timu3_id_520243[举报]
如图,在正三棱柱ABC-A1B1C1中,底面ABC为正三角形,M、N、G分别是棱CC1、AB、BC的中点,且
.
(Ⅰ)求证:CN∥平面AMB1;
(Ⅱ)求证: B1M⊥平面AMG.
![]()
【解析】本试题主要是考查了立体几何汇总线面的位置关系的运用。第一问中,要证CN∥平面AMB1;,只需要确定一条直线CN∥MP,既可以得到证明
第二问中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到线线垂直,B1M⊥AG,结合线面垂直的判定定理和性质定理,可以得证。
解:(Ⅰ)设AB1 的中点为P,连结NP、MP ………………1分
![]()
![]()
∵CM
,NP
,∴CM
NP, …………2分
∴CNPM是平行四边形,∴CN∥MP …………………………3分
∵CN 平面AMB1,MP奂 平面AMB1,∴CN∥平面AMB1…4分
(Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,
∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分
∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,
设:AC=2a,则![]()
…………………………8分
同理,
…………………………………9分
∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,
![]()
………………………………10分
![]()
查看习题详情和答案>>
阅读下面一段文字:已知数列{an}的首项a1=1,如果当n≥2时,an-an-1=2,则易知通项an=2n-1,前n项的和Sn=n2.将此命题中的“等号”改为“大于号”,我们得到:数列{an}的首项a1=1,如果当n≥2时,an-an-1>2,那么an>2n-1,且Sn>n2.这种从“等”到“不等”的类比很有趣.由此还可以思考:要证Sn>n2,可以先证an>2n-1,而要证an>2n-1,只需证an-an-1>2(n≥2).结合以上思想方法,完成下题:
已知函数f(x)=x3+1,数列{an}满足a1=1,an+1=f(an),若数列{an}的前n项的和为Sn,求证:Sn≥2n-1. 查看习题详情和答案>>
已知函数f(x)=x3+1,数列{an}满足a1=1,an+1=f(an),若数列{an}的前n项的和为Sn,求证:Sn≥2n-1. 查看习题详情和答案>>
阅读下面一段文字:已知数列{an}的首项a1=1,如果当n≥2时,an-an-1=2,则易知通项an=2n-1,前n项的和Sn=n2.将此命题中的“等号”改为“大于号”,我们得到:数列{an}的首项a1=1,如果当n≥2时,an-an-1>2,那么an>2n-1,且Sn>n2.这种从“等”到“不等”的类比很有趣.由此还可以思考:要证Sn>n2,可以先证an>2n-1,而要证an>2n-1,只需证an-an-1>2(n≥2).结合以上思想方法,完成下题:
已知函数f(x)=x3+1,数列{an}满足a1=1,an+1=f(an),若数列{an}的前n项的和为Sn,求证:Sn≥2n-1.
查看习题详情和答案>>
已知函数f(x)=x3+1,数列{an}满足a1=1,an+1=f(an),若数列{an}的前n项的和为Sn,求证:Sn≥2n-1.
阅读下面一段文字:已知数列{an}的首项a1=1,如果当n≥2时,an-an-1=2,则易知通项an=2n-1,前n项的和Sn=n2.将此命题中的“等号”改为“大于号”,我们得到:数列{an}的首项a1=1,如果当n≥2时,an-an-1>2,那么an>2n-1,且Sn>n2.这种从“等”到“不等”的类比很有趣.由此还可以思考:要证Sn>n2,可以先证an>2n-1,而要证an>2n-1,只需证an-an-1>2(n≥2).结合以上思想方法,完成下题:
已知函数f(x)=x3+1,数列{an}满足a1=1,an+1=f(an),若数列{an}的前n项的和为Sn,求证:Sn≥2n-1.
查看习题详情和答案>>
已知函数f(x)=x3+1,数列{an}满足a1=1,an+1=f(an),若数列{an}的前n项的和为Sn,求证:Sn≥2n-1.
查看习题详情和答案>>