ÌâÄ¿ÄÚÈÝ
ÔĶÁÏÂÃæÒ»¶ÎÎÄ×Ö£ºÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=1£¬Èç¹ûµ±n¡Ý2ʱ£¬an-an-1=2£¬ÔòÒ×֪ͨÏîan=2n-1£¬Ç°nÏîµÄºÍSn=n2£®½«´ËÃüÌâÖеġ°µÈºÅ¡±¸ÄΪ¡°´óÓںš±£¬ÎÒÃǵõ½£ºÊýÁÐ{an}µÄÊ×Ïîa1=1£¬Èç¹ûµ±n¡Ý2ʱ£¬an-an-1£¾2£¬ÄÇôan£¾2n-1£¬ÇÒSn£¾n2£®ÕâÖÖ´Ó¡°µÈ¡±µ½¡°²»µÈ¡±µÄÀà±ÈºÜÓÐȤ£®ÓÉ´Ë»¹¿ÉÒÔ˼¿¼£ºÒªÖ¤Sn£¾n2£¬¿ÉÒÔÏÈÖ¤an£¾2n-1£¬¶øÒªÖ¤an£¾2n-1£¬Ö»ÐèÖ¤an-an-1£¾2£¨n¡Ý2£©£®½áºÏÒÔÉÏ˼Ïë·½·¨£¬Íê³ÉÏÂÌ⣺
ÒÑÖªº¯Êýf£¨x£©=x3+1£¬ÊýÁÐ{an}Âú×ãa1=1£¬an+1=f£¨an£©£¬ÈôÊýÁÐ{an}µÄÇ°nÏîµÄºÍΪSn£¬ÇóÖ¤£ºSn¡Ý2n-1£®
ÒÑÖªº¯Êýf£¨x£©=x3+1£¬ÊýÁÐ{an}Âú×ãa1=1£¬an+1=f£¨an£©£¬ÈôÊýÁÐ{an}µÄÇ°nÏîµÄºÍΪSn£¬ÇóÖ¤£ºSn¡Ý2n-1£®
¡ßa1=1£¬an+1=an3+1£¬an¡Ý1£®¡4¡ä
¡àÓУºan+1=an3+1¡Ýan2+1¡Ý2an£¬
¡à
¡Ý2£®¡8¡ä
¡àan=
•
•¡•
•
•a1¡Ý2n-1£¬
¼´an¡Ý2n-1£®¡11¡ä
¹ÊSn=a1+a2+¡+an¡Ý1+2+22+¡+2n-1=
=2n-1£®
¡àSn¡Ý2n-1³ÉÁ¢£®¡14¡ä
¡àÓУºan+1=an3+1¡Ýan2+1¡Ý2an£¬
¡à
an+1 |
an |
¡àan=
an |
an-1 |
an-1 |
an-2 |
a3 |
a2 |
a2 |
a1 |
¼´an¡Ý2n-1£®¡11¡ä
¹ÊSn=a1+a2+¡+an¡Ý1+2+22+¡+2n-1=
1-2n |
1-2 |
¡àSn¡Ý2n-1³ÉÁ¢£®¡14¡ä
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿