摘要: 能用逻辑联结词写出两个简单命题的复合命题并根据真值表判断真假.从命题的真假性体会否命题与命题的否定的区别.
网址:http://m.1010jiajiao.com/timu3_id_515747[举报]
我们用符号“||”定义过一些数字概念,如实数绝对值的概念:对于a∈R,|a|=
,可以证明,对任意a,b∈R,不等式|a|-|b|≤|a+b|≤|a|+|b|成立.
(1)再写出两个这类数学概念的定义及其成立的不等式;
(2)对于集合A,定义“|A|”为集合A中元素的个数,对任意的集合A、B有类似的不等式成立吗?如果有,写出一个,并指出等号成立的条件(不必说明理由);如果没有,请说明理由;
(3)设有集合A、B,若|A|=15,|B|≥15,若从A中任取两上元素,恰好都是B中元素的概率p≥
,求|A∩B|的取值范围.
查看习题详情和答案>>
|
(1)再写出两个这类数学概念的定义及其成立的不等式;
(2)对于集合A,定义“|A|”为集合A中元素的个数,对任意的集合A、B有类似的不等式成立吗?如果有,写出一个,并指出等号成立的条件(不必说明理由);如果没有,请说明理由;
(3)设有集合A、B,若|A|=15,|B|≥15,若从A中任取两上元素,恰好都是B中元素的概率p≥
| 1 |
| 5 |
甲班:97,81,91,80,89,79,92,83,85,93
乙班:60,80,87,77,96,64,76,60,84,96
(1)根据抽取结果填写茎叶图,并根据所填写的茎叶图,对甲、乙两班的成绩做对比,写出两个统计结论;
(2)学校决定从样本中88分以上的7名学生中再随机选取4位同学参加座谈活动,求至少含有一名乙班学生并且甲班第一名或第二名(指甲班样本中的排名)能被抽到的概率.
某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,分别测出它们的高度如下(单位:cm)
甲:19 20 21 23 25 29 32 33 37 41
乙:10 26 30 30 34 37 44 46 46 47
(1)用茎叶图表示上述两组数据,并对两块地抽取树苗的高度的平均数和中位数进行比较,写出两个统计结论;
(2)现苗圃基地将甲、乙两块地的树苗合在一起,按高度分成一、二两个等级,每个等级按不同的价格出售.某市绿化部门下属的2个单位计划购买甲、乙两地种植的树苗.已知每个单位购买每个等级树苗所需费用均为5万元,且每个单位对每个等级树苗买和不买的可能性各占一半,求该市绿化部门此次采购所需资金总额X的分布列及数学期望值E(X).
查看习题详情和答案>>
甲:19 20 21 23 25 29 32 33 37 41
乙:10 26 30 30 34 37 44 46 46 47
| 甲 | 乙 | |
| 1 | ||
| 2 | ||
| 3 | ||
| 4 |
(2)现苗圃基地将甲、乙两块地的树苗合在一起,按高度分成一、二两个等级,每个等级按不同的价格出售.某市绿化部门下属的2个单位计划购买甲、乙两地种植的树苗.已知每个单位购买每个等级树苗所需费用均为5万元,且每个单位对每个等级树苗买和不买的可能性各占一半,求该市绿化部门此次采购所需资金总额X的分布列及数学期望值E(X).