摘要:掌握求动点的轨迹方程时常见的基本方法. [教学目标]
网址:http://m.1010jiajiao.com/timu3_id_513169[举报]
(2012•浙江模拟)平面内与直线平行的非零向量称为直线的方向向量;与直线的方向向量垂直的非零向量称为直线的法向量.在平面直角坐标系中,利用求动点的轨迹方程的方法,可以求出过点A(2,1)且法向量为
=(-1,2)的直线(点法式)方程为-(x-2)+2(y-1)=0,化简后得x-2y=0.类比以上求法,在空间直角坐标系中,经过点A(2,1,3),且法向量为
=(-1,2,1)的平面(点法式)方程为
查看习题详情和答案>>
| n |
| n |
x-2y-z+3=0
x-2y-z+3=0
(请写出化简后的结果).设圆
的极坐标方程为
,以极点为直角坐标系的原点,极轴为
轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆
上的一点
作平行于
轴的直线
,设
与
轴交于点
,向量
.
(Ⅰ)求动点
的轨迹方程;
(Ⅱ)设点
,求
的最小值.