摘要:向量是数形结合的典范.向量的几何表示法--有向线段表示法是运用几何性质解决向量问题的基础.在向量的运算过程中.借助于图形性质不仅可以给抽象运算以直观解释.有时甚至更简捷. 向量运算中的基本图形:①向量加减法则:三角形或平行四边形,②实数与向量乘积的几何意义--共线,③定比分点基本图形--起点相同的三个向量终点共线等.
网址:http://m.1010jiajiao.com/timu3_id_510306[举报]
(2007•普陀区一模)现有问题:“对任意x>0,不等式x-a+
>0恒成立,求实数a的取值范围.”有两位同学用数形结合的方法分别提出了自己的解题思路和答案:
学生甲:在一个坐标系内作出函数f(x)=
和g(x)=-x+a的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在g(x)的上方.可解得a的取值范围是[0,+∞]
学生乙:在坐标平面内作出函数f(x)=x+a+
的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在直线y=2a的上方.可解得a的取值范围是[0,1].
则以下对上述两位同学的解题方法和结论的判断都正确的是( )
| 1 |
| x+a |
学生甲:在一个坐标系内作出函数f(x)=
| 1 |
| x+a |
学生乙:在坐标平面内作出函数f(x)=x+a+
| 1 |
| x+a |
则以下对上述两位同学的解题方法和结论的判断都正确的是( )
查看习题详情和答案>>
现有问题:“对任意x>0,不等式x-a+
>0恒成立,求实数a的取值范围.”有两位同学用数形结合的方法分别提出了自己的解题思路和答案:
学生甲:在一个坐标系内作出函数
和g(x)=-x+a的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在g(x)的上方.可解得a的取值范围是[0,+∞]
学生乙:在坐标平面内作出函数
的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在直线y=2a的上方.可解得a的取值范围是[0,1].
则以下对上述两位同学的解题方法和结论的判断都正确的是( )
A.甲同学方法正确,结论错误
B.乙同学方法正确,结论错误
C.甲同学方法正确,结论正确
D.乙同学方法错误,结论正确
查看习题详情和答案>>
学生甲:在一个坐标系内作出函数
学生乙:在坐标平面内作出函数
则以下对上述两位同学的解题方法和结论的判断都正确的是( )
A.甲同学方法正确,结论错误
B.乙同学方法正确,结论错误
C.甲同学方法正确,结论正确
D.乙同学方法错误,结论正确
查看习题详情和答案>>
对对数函数的图象和性质的研究,教材是根据互为反函数的图象特征,由指数函数的图象再作出其关于直线y=x的图象,即得对数函数的图象,在数形结合的数学思想指导下,推得对数函数的性质.请归纳对数函数y=logax(a>0且a≠1)的性质.
现有问题:“对任意x>0,不等式x-a+
>0恒成立,求实数a的取值范围.”有两位同学用数形结合的方法分别提出了自己的解题思路和答案:
学生甲:在一个坐标系内作出函数
和g(x)=-x+a的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在g(x)的上方.可解得a的取值范围是[0,+∞]
学生乙:在坐标平面内作出函数
的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在直线y=2a的上方.可解得a的取值范围是[0,1].
则以下对上述两位同学的解题方法和结论的判断都正确的是
- A.甲同学方法正确,结论错误
- B.乙同学方法正确,结论错误
- C.甲同学方法正确,结论正确
- D.乙同学方法错误,结论正确