摘要:21.如图.定直线l是半径为3的定圆F的切线.P为平面上一动点.作PQ⊥l于Q.若|PQ|=2|PF|. ⑴点P在怎样的曲线上?并求出该曲线E的标准方程, ⑵过圆心F作直线交曲线E于A.B两点.若曲线E的 中心为O.且. 求点A.B的坐标.
网址:http://m.1010jiajiao.com/timu3_id_509263[举报]
(本小题满分12分)
如图直线l与x轴、y轴的正半轴分别交于A(8,0)、B(0,6)两点,P为直线l上异于A、B两点之间的一动点. 且PQ∥OA交OB于点Q.![]()
(1)若
和四边形
的面积满足
时,请你确定P点在AB上的位置,并求出线段PQ的长;
(2)在x轴上是否存在点M,使△MPQ为等腰直角三角形,若存在,求出点
与
的坐标;若不存在,说明理由.
(本小题满分12分)
如图直线l与x轴、y轴的正半轴分别交于A(8,0)、B(0,6)两点,P为直线l上异于A、B两点之间的一动点. 且PQ∥OA交OB于点Q.

(1)若
和四边形
的面积满足
时,请你确定P点在AB上的位置,并求出线段PQ的长;
(2)在x轴上是否存在点M,使△MPQ为等腰直角三角形,若存在,求出点
与
的坐标;若不存在,说明理由.
如图直线l与x轴、y轴的正半轴分别交于A(8,0)、B(0,6)两点,P为直线l上异于A、B两点之间的一动点. 且PQ∥OA交OB于点Q.
(1)若
(2)在x轴上是否存在点M,使△MPQ为等腰直角三角形,若存在,求出点
(本小题满分12分)
如图,椭圆
经过点
,离心率
。

(l)求椭圆
的方程;
(2)设直线
与椭圆
交于
两点,点
关于
轴的对称点为
与
不重合),则直线
与
轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由。
如图,椭圆
(l)求椭圆
(2)设直线
(本小题满分12分)如下图,某隧道设计为双向四车道,车道总宽20 m,要求通行车辆限高5 m,隧道全长2.5 km,隧道的两侧是与地面垂直的墙,高度为3米,隧道上部拱线近似地看成半个椭圆.
![]()
![]()
(1)若最大拱高h为6 m,则隧道设计的拱宽l是多少?
(2)若要使隧道上方半椭圆部分的土方工程量最小,则应如何设计拱高h和拱宽l?
(已知:椭圆
+
=1的面积公式为S=
,柱体体积为底面积乘以高.)
(3)为了使隧道内部美观,要求在拱线上找两个点M、N,使它们所在位置的高度恰好是限高5m,现以M、N以及椭圆的左、右顶点为支点,用合金钢板把隧道拱线部分连接封闭,形成一个梯形,若l=30m,梯形两腰所在侧面单位面积的钢板造价是梯形顶部单位面积钢板造价的
倍,试确定M、N的位置以及
的值,使总造价最少.