摘要:20.解:设事件Ai =, I=1,2,3则由题意, ξ可能有四个值0,1,2,3,由于各事件Ai相互独立.故 即 ξ 0 1 2 3 P 0.504 0.398 0.092 0.006
网址:http://m.1010jiajiao.com/timu3_id_507614[举报]
| |||||||||||||||
设x1,x2∈R,常数a>0,定义运算“*”:x1*x2=(x1+x2)2-(x1-x2)2.
(1)若x≥0,求动点P(x,
)的轨迹C的方程;
(2)若a=2,不过原点的直线l与x轴、y轴的交点分别为T,S,并且与(1)中的轨迹C交于不同的两点P,Q,试求
+
的取值范围;
(3)设P(x,y)是平面上的任意一点,定义d1(P)=
,d2(P)=
.若在(1)中的轨迹C存在不同的两点A1,A2,使得d1(Ai)=
d2(Ai)(i=1,2)成立,求实数a的取值范围.
查看习题详情和答案>>
(1)若x≥0,求动点P(x,
| x*a |
(2)若a=2,不过原点的直线l与x轴、y轴的交点分别为T,S,并且与(1)中的轨迹C交于不同的两点P,Q,试求
|
| ||
|
|
|
| ||
|
|
(3)设P(x,y)是平面上的任意一点,定义d1(P)=
| 1 |
| 2 |
| (x*x)+(y*y) |
| 1 |
| 2 |
| (x-a)*(x-a) |
| a |
对于各项均为整数的数列{an},如果满足ai+i(i=1,2,3,…)为完全平方数,则称数列{an}具有“P性质”;
不论数列{an}是否具有“P性质”,如果存在与{an}不是同一数列的{bn},且{bn}同时满足下面两个条件:①b1,b2,b3,…,bn是a1,a2,a3,…,an的一个排列;②数列{bn}具有“P性质”,则称数列{an}具有“变换P性质”.
(Ⅰ)设数列{an}的前n项和Sn=
(n2-1),证明数列{an}具有“P性质”;
(Ⅱ)试判断数列1,2,3,4,5和数列1,2,3,…,11是否具有“变换P性质”,具有此性质的数列请写出相应的数列{bn},不具此性质的说明理由;
(Ⅲ)对于有限项数列A:1,2,3,…,n,某人已经验证当n∈[12,m2](m≥5)时,数列A具有“变换P性质”,试证明:当n∈[m2+1,(m+1)2]时,数列A也具有“变换P性质”. 查看习题详情和答案>>
不论数列{an}是否具有“P性质”,如果存在与{an}不是同一数列的{bn},且{bn}同时满足下面两个条件:①b1,b2,b3,…,bn是a1,a2,a3,…,an的一个排列;②数列{bn}具有“P性质”,则称数列{an}具有“变换P性质”.
(Ⅰ)设数列{an}的前n项和Sn=
| n | 3 |
(Ⅱ)试判断数列1,2,3,4,5和数列1,2,3,…,11是否具有“变换P性质”,具有此性质的数列请写出相应的数列{bn},不具此性质的说明理由;
(Ⅲ)对于有限项数列A:1,2,3,…,n,某人已经验证当n∈[12,m2](m≥5)时,数列A具有“变换P性质”,试证明:当n∈[m2+1,(m+1)2]时,数列A也具有“变换P性质”. 查看习题详情和答案>>