摘要:2.已知为非负数..求的最值.
网址:http://m.1010jiajiao.com/timu3_id_506229[举报]
已知函数
, 函数
.
(1)若
的值域为
,求实数
的取值范围;
(2)当
时,求函数
的最小值
;
(3)是否存在非负实数m、n,使得函数
的定义域为
,值域为
,
若存在,求出
、
的值;若不存在,则说明理由.
(1)已知矩阵
,向量
,
(Ⅰ)求矩阵A的特征值和对应的特征向量;
(Ⅱ)求向量α,使得A2α=β.
(2)在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点A、B的极坐标分别为(1,0)、
,曲线C的参数方程为
为参数,r>0)
(Ⅰ)求直线AB的直角坐标方程;
(Ⅱ)若直线AB和曲线C只有一个交点,求r的值.
(3)设不等式|x-2|>1的解集与关于x的不等式x2-ax+b>0的解集相同.
(Ⅰ)求a,b的值;
(Ⅱ)求函数
的最大值,以及取得最大值时x的值.
查看习题详情和答案>>
(Ⅰ)求矩阵A的特征值和对应的特征向量;
(Ⅱ)求向量α,使得A2α=β.
(2)在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点A、B的极坐标分别为(1,0)、
(Ⅰ)求直线AB的直角坐标方程;
(Ⅱ)若直线AB和曲线C只有一个交点,求r的值.
(3)设不等式|x-2|>1的解集与关于x的不等式x2-ax+b>0的解集相同.
(Ⅰ)求a,b的值;
(Ⅱ)求函数
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知矩阵M=(
)的两^E值分别为λ1=-1和λ2=4.
(I)求实数的值;
(II )求直线x-2y-3=0在矩阵M所对应的线性变换作用下的像的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标平面内,以坐标原点O为极点x轴的非负半轴为极轴建立极坐标系.已知曲线C的参数方程为
,
(a为餓),曲线D的鍵标方程为ρsin(θ-
)=-
.
(I )将曲线C的参数方程化为普通方程;
(II)判断曲线c与曲线D的交点个数,并说明理由.
(3)选修4-5:不等式选讲
已知a,b为正实数.
(I)求证:
+
≥a+b;
(II)利用(I)的结论求函数y=
+
(0<x<1)的最小值.
查看习题详情和答案>>
已知矩阵M=(
(I)求实数的值;
(II )求直线x-2y-3=0在矩阵M所对应的线性变换作用下的像的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标平面内,以坐标原点O为极点x轴的非负半轴为极轴建立极坐标系.已知曲线C的参数方程为
(a为餓),曲线D的鍵标方程为ρsin(θ-
(I )将曲线C的参数方程化为普通方程;
(II)判断曲线c与曲线D的交点个数,并说明理由.
(3)选修4-5:不等式选讲
已知a,b为正实数.
(I)求证:
(II)利用(I)的结论求函数y=
查看习题详情和答案>>