摘要: 如图所示.在直三棱柱中..为棱的中点.且 . (Ⅰ)求证:平面, (Ⅱ)求异面直线与所成的角, (Ⅲ)求点到平面的距离. 广东省潮州市实验中学2006年普通高校招生模拟考试
网址:http://m.1010jiajiao.com/timu3_id_505329[举报]
(本小题满分14分)设b>0,椭圆方程为
,抛物线方程为
.如图4所示,过点F(0,b+2)作x轴的平行线,与抛物线在
第一象限的交点为G.已知抛物线在点G的切线经
过椭圆的右焦点
.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在
抛物线上是否存在点P,使得△ABP为直角三角形?
若存在,请指出共有几个这样的点?并说明理由
(不必具体求出这些点的坐标).
查看习题详情和答案>>(本小题满分14分)
已知几何体
的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.
(Ⅰ)求此几何体的体积;
(Ⅱ)求异面直线
与
所成角的余弦值;
(Ⅲ)探究在
上是否存在点Q,使得
,并说明理由.
![]()
(本小题满分14分)
设
,椭圆方程为
,抛物线方程为
.如图6所示,过点
作
轴的平行线,与抛物线在第一象限的交点为
,已知抛物线在点
的切线经过椭圆的右焦点
.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设
分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点
,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
![]()