摘要:46.(2005湖南卷理第19题.文第21题.满分14分) 已知椭圆C:+=1(a>b>0)的左.右焦点为F1.F2.离心率为e. 直线l:y=ex+a与x轴.y轴分别交于点A.B.M是直线l与椭圆C的一个公共点.P是点F1关于直线l的对称点.设=λ. (Ⅰ)证明:λ=1-e2, (Ⅱ)若.△PF1F2的周长为6,写出椭圆C的方程, (Ⅲ)确定λ的值.使得△PF1F2是等腰三角形.
网址:http://m.1010jiajiao.com/timu3_id_503553[举报]
已知椭圆x2+
=1的左、右两个顶点分别为A,B.双曲线C的方程为x2-
=1. 设点P在第一象限且在双曲线C上,直线AP与椭圆相交于另一点T.
(Ⅰ)设P, T两点的横坐标分别为x1,x2,证明x1· x2=1;
(Ⅱ)设△TAB与△POB(其中O为坐标原点)的面积分别为S1与S2 ,且
·
≤15,求S
-S
的取值范围.
已知椭圆E:
=1的左焦点为F,左准线l与x轴的交点是圆C的圆心,圆C恰好经过坐标原点O,设G是圆C上任意一点.
(1)求圆C的方程;
(2)若直线FG与直线l交于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;
(3)在平面上是否存在一点P,使得
?若存在,求出点P坐标;若不存在,请说明理由.
已知函数f(x)=-x3+ax2+b(a,b∈R).
(1)求函数f(x)的单调递增区间;
(2)若对任意a∈[3,4],函数f(x)在R上都有三个零点,求实数b的取值范围.
已知椭圆x2+
=1的左、右两个顶点分别为A、B.曲线C是以A、B两点为顶点,离心率为
的双曲线,设点P在第一象限且在曲线C上,直线AP与椭圆相交于另一点T.
(1)求曲线C的方程;
(2)设点P、T的横坐标分别为x1,x2,证明:x1·x2=1;
(3)设△TAB与△POB(其中O为坐标原点)的面积分别为S1与S2,且
,求S
-S
的取值范围.