摘要:证(Ⅰ)∵PA^底面ABCD AD是PD在平面ABCD内的射影. ∵CDÌ平面ABCD.且CD^AD. 故CD^PD .------...-4分 (Ⅱ)取CD中点G.连结EG.FG ∵E.F分别是AB.PC的中点.\EG//AD.FG//PD. \平面EFG//平面PAD.\EF//平面PAD. -----..--8分 (Ⅲ)当平面PCD与平面ABCD成45°角时.直线EF^平面PCD. 证明:G为CD中点.则EG^CD.由(1)知FG^CD. 故ÐEGF为平面PCD 与平面ABCD所成二面角的平面角.即ÐEGF=45°. 从而得ÐADP=45°. AD=AP. 由RtDPAE@RtDCBE.得PE=CE. 又F是PC的中点.\EF^PC. 由CD^EG.CD^FG.得CD^平面EFG.CD^EF.即EF^CD. 故EF^平面PCD. ----..------.----.12分

网址:http://m.1010jiajiao.com/timu3_id_502105[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网