摘要:21. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1.倾斜角为45°的直线交椭圆于A.B两点.设AB中点为M.直线AB与OM的夹角为a. (1)用半焦距c表示椭圆的方程及tg; (2)若2<tg<3.求椭圆率心率e的取值范围.
网址:http://m.1010jiajiao.com/timu3_id_501035[举报]
本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
已知以原点
为中心的椭圆的一条准线方程为
,离心率
,
是椭圆上的动点.
(Ⅰ)若
的坐标分别是
,求
的最大值;
(Ⅱ)如题(20)图,点
的坐标为
,
是圆
上的点,
是点
在
轴上的射影,点
满足条件:
,
.求线段
的中点
的轨迹方程;
![]()
(本小题满分12分)
有一幅椭圆型彗星轨道图,长4cm,高
,如下图,
已知O为椭圆中心,A1,A2是长轴两端点,
|
(Ⅰ)建立适当的坐标系,写出椭圆方程,
并求出当彗星运行到太阳正上方时二者在图上的距离;
(Ⅱ)直线l垂直于A1A2的延长线于D点,|OD|=4,
设P是l上异于D点的任意一点,直线A1P,A2P分别
交椭圆于M、N(不同于A1,A2)两点,问点A2能否
在以MN为直径的圆上?试说明理由.
查看习题详情和答案>> (本小题满分12分)已知中心在原点的椭圆
的离心率
,一条准线方程为![]()
(1)求椭圆
的标准方程;
(2)若以
>0)为斜率的直线
与椭圆
相交于两个不同的点
,且线段
的垂直平分线与两坐标轴围成的三角形的面积为
,求
的取值范围。
查看习题详情和答案>>