摘要:28.两个全等的等腰直角三角形和三角形如图1放置.点在同一条直线上.那么点C.A.E在同一条直线上, ①在图1中.作的平分线.过点作.垂足为, ②猜想:线段的关系.结论是: . 中的“等腰直角三角形 换成“直角三角形 .其它条件不变.如图2, 连结CE.请问你猜想的BF与CE的关系是否仍然成立?若成立.请证明,若不成立.请说明理由.
网址:http://m.1010jiajiao.com/timu3_id_472308[举报]
如图,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交
点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.
(1)△ABE与△DCA是否相似?请加以说明.
(2)求m与n的函数关系式,直接写出自变量n的取值范围.
(3)当BE=CD时,分别求出线段BD、CE、DE的长,并通过计算验证BD2+CE2=DE2.
(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.
查看习题详情和答案>>
(1)△ABE与△DCA是否相似?请加以说明.
(2)求m与n的函数关系式,直接写出自变量n的取值范围.
(3)当BE=CD时,分别求出线段BD、CE、DE的长,并通过计算验证BD2+CE2=DE2.
(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.
如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;若旋转到DE⊥AB时,当BP=a,CQ=
a时,求PQ(用含a的代数式表示).

查看习题详情和答案>>
如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;若旋转到DE⊥AB时,当BP=a,CQ=
| 9 | 2 |
(1)在上述旋转过程中,BH与CK有怎样的数量关系四边形CHGK的面积有何变化?证明你发现的结论;
(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的
| 5 | 16 |