摘要:26.已知.如图14.抛物线经过轴上的两点A(.0).B(.0)和轴上的点C(0.).⊙P的圆心P在轴上.且经过B.C两点.若.AB=. (1)求抛物线的解析式, (2)D在抛物线上.且C.D两点关于抛物线的对称轴对称.问直线BD是否经过圆心P?并说明理由, (3)设直线BD交⊙P于另一点E.求经过点E的⊙P的切线的解析式. 厦门市2007年初中毕业和高中阶段各类学校招生考试
网址:http://m.1010jiajiao.com/timu3_id_458670[举报]
已知:如图14,抛物线
与
轴交于点
,点
,与直线
相交于点
,点
,直线
与
轴交于点
.
(1)写出直线
的解析式.
(2)求
的面积.
(3)若点
在线段
上以每秒1个单位长度的速度从
向
运动(不与
重合),同时,点
在射线
上以每秒2个单位长度的速度从
向
运动.设运动时间为
秒,请写出
的面积
与
的函数关系式,并求出点
运动多少时间时,
的面积最大,最大面积是多少?
(2012•鄂州)已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x-2经过A、C两点,且AB=2.
(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=
,当t为何值时,s有最小值,并求出最小值.
(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.

查看习题详情和答案>>
(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=
| ED+OP | ED•OP |
(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.
已知,如图1,抛物线y=ax2+bx过点A(6,3),且对称轴为直线x=
.点B为直线OA下方的抛物线上一动点,点B的横坐标为m.
(1)求该抛物线的解析式;
(2)若△OAB的面积为S.求S关于m的函数关系式,并求出S的最大值;
(3)如图2,过点B作直线BC∥y轴,交线段OA于点C,在抛物线的对称轴上是否存在点D,使△BCD是以D为直角顶点的等腰直角三角形?若存在,求出所有符合条件的点B的坐标;若不存在,请说明理由.
查看习题详情和答案>>
| 5 | 2 |
(1)求该抛物线的解析式;
(2)若△OAB的面积为S.求S关于m的函数关系式,并求出S的最大值;
(3)如图2,过点B作直线BC∥y轴,交线段OA于点C,在抛物线的对称轴上是否存在点D,使△BCD是以D为直角顶点的等腰直角三角形?若存在,求出所有符合条件的点B的坐标;若不存在,请说明理由.
(2013•大安市模拟)已知:如图1,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于C点.
(1)求抛物线的解析式及其顶点Q的坐标;
(2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小.请在图中画出点P的位置,并求点P的坐标;
(3)如图2,若点D是第一象限抛物线上的一个动点,过D作DE⊥x轴,垂足为E.
①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长”.这个同学的说法正确吗?请说明理由.
②若DE与直线BC交于点F.试探究:四边形DCEB能否为平行四边形?若能,请直接写出点D的坐标;若不能,请简要说明理由;

查看习题详情和答案>>
(1)求抛物线的解析式及其顶点Q的坐标;
(2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小.请在图中画出点P的位置,并求点P的坐标;
(3)如图2,若点D是第一象限抛物线上的一个动点,过D作DE⊥x轴,垂足为E.
①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长”.这个同学的说法正确吗?请说明理由.
②若DE与直线BC交于点F.试探究:四边形DCEB能否为平行四边形?若能,请直接写出点D的坐标;若不能,请简要说明理由;