摘要:如图.在梯形纸片ABCD中.AD//BC.AD>CD.将纸片沿过点D的直线折叠.使点C落在AD上的点C处.折痕DE交BC于点E.连结C′E. 求证:四边形CDC′E是菱形. 证明:根据题意可知 则 ∵AD//BC ∴∠C′DE=∠CED ∴∠CDE=∠CED ∴CD=CE ∴CD=C′D=C′E=CE ∴四边形CDC′E为菱形
网址:http://m.1010jiajiao.com/timu3_id_455111[举报]
如图,在梯形纸片ABCD中,BC∥AD,∠A+∠D=90°,tanA=2,过点B作BH⊥AD于H,BC=BH=2.动点F从点D出发,以每秒1个单位的速度沿DH运动到点H停止,在运动过程中,过点F作FE⊥AD交折线D-C-B于点E,将纸片沿直线EF折叠,点C、D的对应点分别是点C1、D1.设F点运动的时间是x秒(x>0).
(1)当点E和点C重合时,求运动时间x的值;
(2)在整个运动过程中,设△EFD1或四边形EFD1C1与梯形ABCD重叠部分面积为S,请直接写出S与x之间的函数关系式和相应自变量x的取值范围;
(3)平移线段CD,交线段BH于点G,交线段AD于点P.在直线BC上存在点I,使△PGI为等腰直角三角形.请求出线段IB的所有可能的长度.

查看习题详情和答案>>
(1)当点E和点C重合时,求运动时间x的值;
(2)在整个运动过程中,设△EFD1或四边形EFD1C1与梯形ABCD重叠部分面积为S,请直接写出S与x之间的函数关系式和相应自变量x的取值范围;
(3)平移线段CD,交线段BH于点G,交线段AD于点P.在直线BC上存在点I,使△PGI为等腰直角三角形.请求出线段IB的所有可能的长度.